Assigning Oxidation Numbers:

- Oxidation number of a free element or diatomic molecule is zero.
 Ex: Na(s), Cu(s), H₂(g), F₂(g)
- 2. In most cases the oxidation number of hydrogen is +1, oxygen is -2, and fluorine is
 -1 when combined with another element.
- 3. The sum of the oxidation numbers of each of the elements in a molecule or ion must equal the charge.

Reduction-Oxidation Reactions (REDOX):

Oxidation- Process in which oxidation state of an element increases. Species loses electrons.

<u>Reduction</u>- Process in which oxidation state of an element decreases. Species gains electrons.

Using Oxidation Numbers:

Ex:

$Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$

Zn(s): oxidized(lost electrons). Cu²⁺(aq): reduced(gained electrons).

Ex:

$2\mathrm{H}_2(\mathbf{g}) + \mathrm{O}_2(\mathbf{g}) \rightarrow 2\mathrm{H}_2\mathrm{O}(\mathbf{l})$

H₂(g): oxidized(lost electrons). O₂(g): reduced(gained electrons).

REDOX cont...:

OXIDATION $Zn(s) \rightarrow Zn^{2+} + 2e^{-}$ **REDUCTION** $Cu^{2+} + 2e^{-} \rightarrow Cu(s)$

- **REDOX** $Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$
- Zn(s): oxidized/reducing agent.
- Cu²⁺(aq): reduced/oxidizing agent.

Writing Balanced Redox

Reactions:

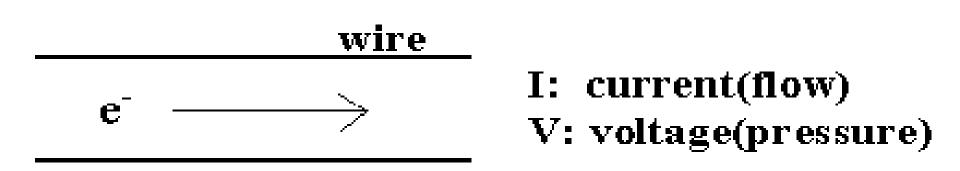
- Oxidation and reduction reactions occur together. Occur in acidic or basic medium. Ex: (acidic)
- SO_3^{2-} + MnO_4^{-} \rightarrow SO_4^{2-} + Mn^{2+}
- **STEP 1: Identify the oxidized and reduced species and write the corresponding half reactions.**

Writing Balanced Redox Reactions cont...:

- STEP 2: Balance each of the half reactions. First atoms other than H and O. Balance O atoms by adding H_2O molecules and then balance H atoms by adding H⁺ ions.
- **STEP 3: Balance the number of electrons.**
- **STEP 4: Add both half reactions and simplify.**

Writing Balanced Redox Reactions

<u>cont...</u>

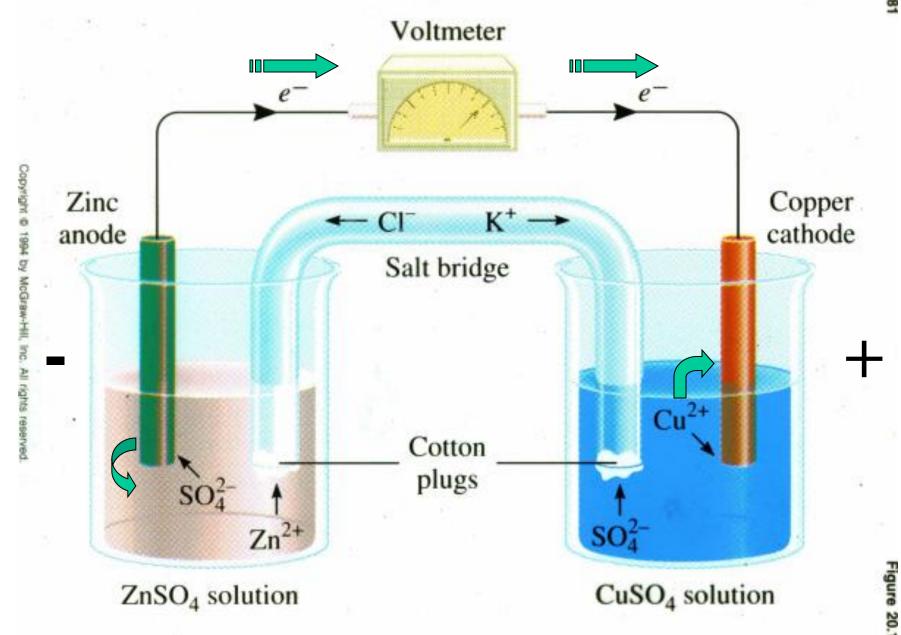

Balance the following redox reaction which occurs in a basic medium.

$$CrO_4^{2-} + S^{2-} \rightarrow Cr(OH)_3(s) + S(s)$$

NOTE: In basic medium add an equal number of OH⁻ ions to both sides to neutralize H⁺ ions.

$OH^- + H^+ \rightarrow H_2O$

Electrochemical Cells:


Consider, $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

Electrochemical Cells:

Electrode- Strip of metal.

- <u>Half cell</u>-Strip of metal in contact with its ion. <u>Salt bridge-</u> Allows passage of charge but not reactants.
- Anode:
- $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$
- Cathode: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$

Electrochemical Cells cont...:

Electrode Potentials:

The voltage recorded by an electrochemical cell is referred to as the electromotive force(emf) and given the following symbol.

Ecoll

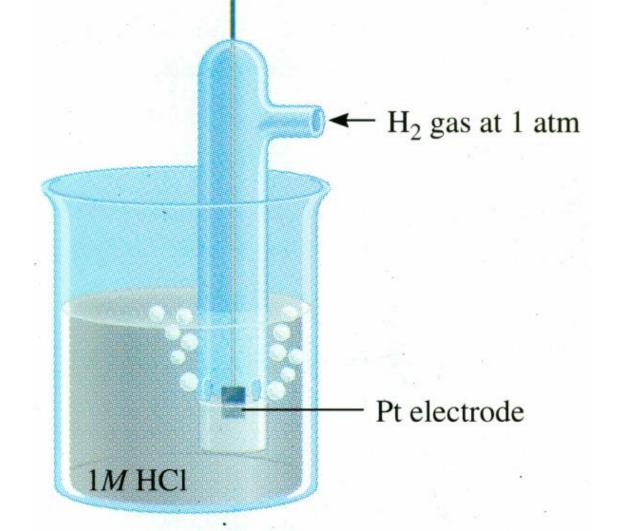
Describing Electrochemical Cells (Cell Diagram):

ANODE(OXIDATION) on left. CATHODE(REDUCTION) on right. | indicates phase change. || indicates salt bridge.

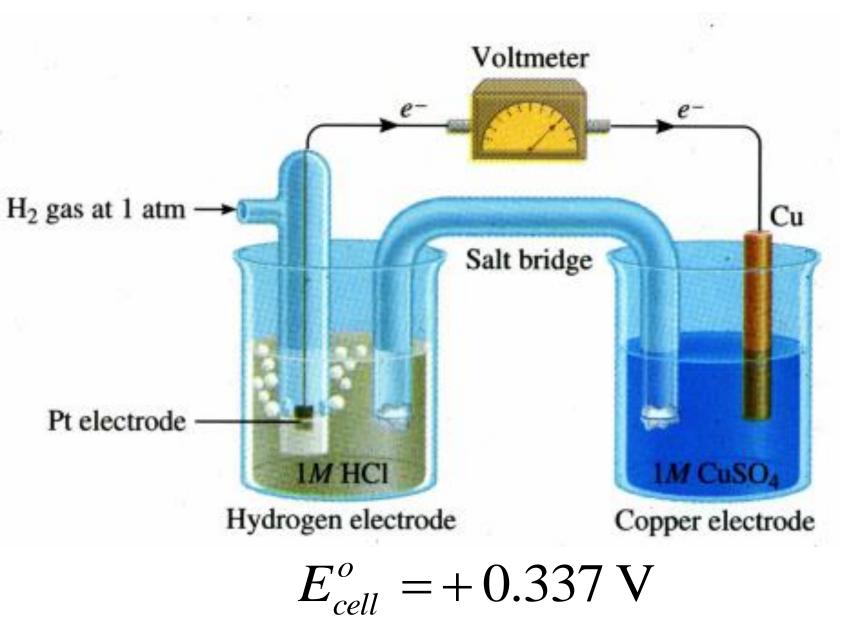
M(s) |Mⁿ⁺(aq) | |Mⁿ⁺(aq) |M(s) (anode) (cathode)

Standard Electrode Potentials:

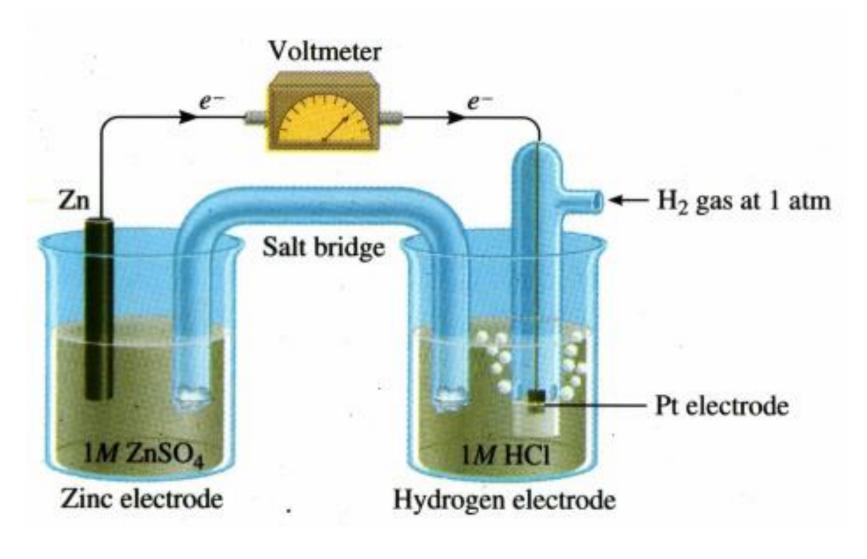
- Reaction occurs under standard conditions: 25°C and all substances are at unit concentration
- (1 M for all ions and 1 atm for all gases). Measured potential given the following symbol.


$$E^{o}_{cell}$$

The cell potential can be broken up into two components or half cells.


$$E_{cell}^{o} = E_{oxidation}^{o} + E_{reduction}^{o}$$

Standard Hydrogen Electrode(SHE):


$2H^+(aq)(1 M) + 2e^- \rightarrow H_2(g)(1 atm)$ $E^o = 0 V$

SHE/Cu

Zn/SHE

 $E_{cell}^{o} = +0.763 \,\mathrm{V}$

Standard Reduction Potentials:

- Can now determine the potential for each half cell. Tabulated and are referred to as standard reduction potentials.
- Ex:Calculate the standard cell potential for the following: $Cd(s) + Cu^{2+}(aq) \rightarrow Cd^{2+}(aq) + Cu(s)$
- Given: $E_{reduc}^{\circ}(V)$ $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) +0.337 V$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s) -0.403 V$

Standard Reduction Potentials cont...

Ex2: Calculate the standard cell potential for the following: $2Al(s) + 3Cu^{2+}(aq) \rightarrow 3Cu(s) + 2Al^{3+}$

Given: $E_{red}^{\circ}(V)$ $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ +0.337 V $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ -1.66 V

Predicting Spontaneous Redox Reactions:

 $w_{electrical} = nFE_{cell}$ $\Delta G = -nFE_{cell}$

- **w**_{electrical} = electrical work
- **n** = # moles of electrons transferred
- F = Faraday constant(96485 C/mole)
- $E_{\text{cell}} = \text{Voltage of cell.} \text{ NOTE: } 1 \text{ J} = 1 \text{ C} \cdot \text{V}$ ΔG Gibbs Free Energy

 $\mathbb{E} G_{\text{elf}} = \# \text{proc} G_{\text{essoise}} = \mathbb{E} G_{\text{elf}} = \# \text{proc} G_{\text{essoise}} = \mathbb{E} G_{\text{elf}} = \mathbb{E} G_{\text{$

$Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$

 $E_{cell}^{o} = +1.10 \,\mathrm{V}$ spontaneous

Reverse reaction $Zn^{2+} + Cu(s) \rightarrow Zn(s) + Cu^{2+}$

 $E_{cell}^{o} = -1.10 \,\mathrm{V}$ not spontaneous

Consider: $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ *E*_{red}°(V) +0.337 V -0.763 V

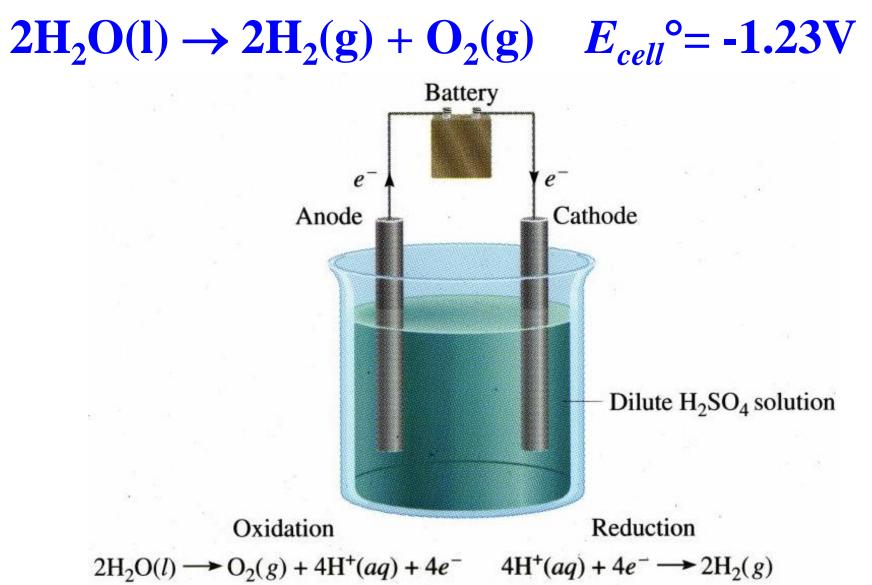
Cu²⁺ more likely to be reduced.

Cell Potential as a Function of Concentration: Nernst Equation: $E_{cell} = E_{cell}^{\circ} + \frac{-0.0592V}{LogQ}$ n Where if $aA + bB \rightarrow cC + dD$ $\mathbf{Q} = \frac{\left[\mathbf{C}\right]^{c} \left[\mathbf{D}\right]^{d}}{\left[\mathbf{A}\right]^{a} \left[\mathbf{B}\right]^{b}}$

<u>Cell Potential as a Function of</u> <u>Concentration cont...</u>

- Ex: Calculate E_{cell} for the following voltaic cell. Zn(s) | Zn²⁺(0.15 M) | | Cu²⁺(0.20 M) | Cu(s)
- Ex:2 Calculate E_{cell} for the following voltaic cell. Pt(s) | H₂(g)(0.5 atm) | H⁺(0.50 M) | |Ag⁺(0.20 M) | Ag(s)

Electrolysis:


Electricity is used to cause a nonspontaneous redox reaction to occur.

- Ex: Electrolysis of molten sodium chloride.
- $2Na^{+}(aq) + 2Cl^{-}(aq) \rightarrow 2Na(s) + Cl_{2}(g)$

 $E_{cell}^{\circ} = -4.07 \text{ V NOT SPONTANEOUS!!!}$

Electrolysis of Water:

Ex:

Quantitative Electrolysis:

Direct relationship between the amount of electricity used and the amount of products obtained from an electrolysis.

E = IR

- *E* = voltage I: current(in amps)
- **R: resistance(in ohms)**
- 1 mole of electrons = 1 F(faraday)
- 1 F = 96500 C
- $1\mathbf{A} = 1 \mathbf{C} \cdot \mathbf{s}^{-1}$

Quantitative Electrolysis Examples:

- Ex:
- $2Na^+$ + $2Cl^- \rightarrow 2Na(s) + Cl_2(g)$
- In the electrolysis of NaCl, how much Na(s) and Cl₂(g) is produced by a current of 0.500 A in 10.0 minutes.

Quantitative Electrolysis Examples:

Ex: 2

- Cu²⁺⁺ H₂O \rightarrow O₂(g) + Cu(s) Balance the following redox reaction and calculate the mass of O₂(g) and Cu(s) produced in 30 sec by a current of 1.50 A.
- **Ex: 3**
- $Zn(s) + Cu^{2+} \rightarrow Zn^{2+} + Cu(s)$
- If a current of 1.00 A is used, how many minutes does it take to electrolyze 0.0146 g of copper?

Corrosion:

Deteriation of metals.

Rust forms when Fe(s) is oxidized to Fe_2O_3 and $O_2(g)$ is reduced to H_2O . $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3$ (brittle)

 $E_{cell} = + \#$ Ag(s)
Cu(s)