## Chemical Kinetics:

The study of the rate at which chemical reactions occur.

$$
\begin{gathered}
\text { reactant } \rightarrow \text { product } \\
\text { rate }=\frac{-\Delta[\text { reactant }]}{\Delta \mathrm{t}}=\frac{\Delta[\text { product }]}{\Delta \mathrm{t}}
\end{gathered}
$$

$\Delta[$ reactant $]:$ change in reactant concentration.
$\Delta$ [product]: change in product concentration. $\Delta t:$ time $\operatorname{period}\left(\mathbf{t}_{\text {FINAL }}-\mathbf{t}_{\text {INITIAL }}\right)$

## General Rate of a Reaction:

For


Ex:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow \quad 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad+2 \mathrm{CO}_{2}$
rate $=\frac{-\Delta\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right]}{\Delta \mathrm{t}}=\frac{1}{2} \times \frac{\Delta\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}{\Delta \mathrm{t}}$

## Calculating Reaction Rates:

Ex: Calculate the reaction rate in terms of $\mathbf{A}$ and C for the following:
$\mathrm{A}+2 \mathrm{~B} \rightarrow 3 \mathrm{C}+2 \mathrm{D}$
if at some time $[\mathrm{A}]=0.4658 \mathrm{M}$ and that
$\mathbf{1 2 5}$ seconds later, $[\mathrm{A}]=\mathbf{0 . 4 2 8 2} \mathbf{~ M}$.

## Rate Laws and Reaction Order:

Reaction rates depend on reactant concentration.

$$
\mathbf{a} \mathbf{A}+\mathbf{b B} \rightarrow \text { products }
$$

Rate Law relates reactant concentrations to reaction rates.

$$
\text { Rate }=k[A]^{\mathrm{m}}[\mathbf{B}]^{\mathrm{n}}
$$

k: rate constant $\mathrm{m}, \mathrm{n}$ : exponents
[A], [B]: concentration of reactants in molarity

## Reaction Order:

Reaction order refers to the values of the exponents in a rate law. In other words the value of $\mathbf{m}$ and $n$.

Example:

$$
\text { Rate }=\mathbf{k}[\mathbf{A}]^{2}[\mathbf{B}]
$$

Rate 2nd order in A, 1st order in B, and 3rd order overall.

## Method of Initial Rates:

Used to determine exponents. Consider the following.

$$
\mathbf{A}+\mathbf{B} \rightarrow \mathbf{C}
$$

| Exp\# | $[\mathrm{A}]$ | $[B]$ | Rate(M/s) |
| :---: | :---: | :---: | :---: |
| 1 | 0.15 M | 0.15 M | 0.048 |
| 2 | 0.30 M | $\mathbf{0 . 1 5} \mathrm{M}$ | $\mathbf{0 . 1 9 2}$ |
| 3 | $\mathbf{0 . 1 5} \mathrm{M}$ | $\mathbf{0 . 3 0} \mathrm{M}$ | $\mathbf{0 . 0 9 6}$ |
| 4 | 0.30 M | $\mathbf{0 . 3 0} \mathrm{M}$ | 0.384 |

From data: Rate $=k[A]^{2}[B]$

## First Order Reaction:

## A $\rightarrow$ products

$$
\text { Rate }=\mathbf{k}[\mathbf{A}]
$$

Integrated Rate Law:

$$
\operatorname{In} \frac{[\mathrm{A}]_{\mathrm{t}}}{[\mathrm{~A}]_{\mathrm{o}}}=-\mathrm{kt}
$$

$[\mathrm{A}]_{0}=[\mathrm{A}]$ at $\mathrm{t}=\mathbf{0} \mathrm{s}$.
$[\mathrm{A}]_{\mathrm{t}}=[\mathrm{A}]$ at time t .
$k=$ rate constant.
t = time.

## Integrated Rate Law Example:

Ex:
$2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$

## If the reaction is first order and

 $\mathrm{k}=1.8 \times 10^{-5} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$, and the initial concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ is 0.30 M .a) Calculate the concentration of $\mathbf{H}_{2} \mathrm{O}_{2}$ after 4.00 hours?

## Integrated Rate Law Example

 cont...:b) How long will it take the concentration to drop to 0.12 M ?
c) How long will it take for $90 \%$ of the $\mathrm{H}_{2} \mathrm{O}_{2}$ to decompose?

## Half-Life for First Order:

## Time for the reactant concentration to

 decrease by half.For First Order Reactions,

$$
\mathrm{t}_{1 / 2}=\frac{\operatorname{In} 2}{\mathrm{k}}
$$

## Second Order Reactions:

For a single reactant.

$$
\begin{aligned}
& \mathbf{A} \rightarrow \text { products } \\
& \text { Rate }=\mathbf{k}[\mathbf{A}]^{2}
\end{aligned}
$$

## Integrated Rate Law

$$
\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}=\mathrm{kt}+\frac{1}{[\mathrm{~A}]_{\mathrm{o}}}
$$

## Half Life For Second Order:

$$
\mathrm{t}_{1 / 2}=\frac{1}{\mathrm{k}[\mathrm{~A}]_{\mathrm{o}}}
$$

## Example:

The second order decomposition of $\mathrm{HI}(\mathrm{g})$ at 700 K is as follows:

$$
\begin{gathered}
\mathrm{HI}(\mathrm{~g}) \rightarrow \mathbf{1 / 2 \mathrm { H } _ { 2 }}(\mathrm{g})+1 / 2 \mathrm{I}_{2}(\mathrm{~g}) \\
\text { Rate } \quad=\mathrm{k}[\mathrm{HI}]^{2}
\end{gathered}
$$

Calculate the half life if the initial concentration of HI is 1.00 M and $\mathrm{k}=0.0012 \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$.

## Chemical Kinetic Theories:

## Collision Theory:

If molecules, atoms, or ions collide into each other with enough energy, existing bonds will be broken and products will be formed.

Activation Energy $\left(E_{a}\right)$ : The minimum energy required in a collision for a reaction to occur.

Orientation of molecules is important.


## Transition State Theory:

Reactants come together, form an activated complex, and dissociate into products.

## Consider the reaction:

$\mathrm{I}^{-}+\mathrm{CH}_{3}-\mathrm{Br} \rightarrow \mathrm{I}-\mathrm{CH}_{3}-\mathrm{-Br} \rightarrow \mathrm{I}-\mathrm{CH}_{3}+\mathrm{Br}^{-}$
Activated Complex Transition State

## Arrhenius Equation:

Relates reaction rate to temperature.

$$
\operatorname{Ink}=\frac{-\mathrm{E}_{\mathrm{A}}}{\mathrm{RT}}+\operatorname{In} \mathrm{A}
$$

$\mathrm{E}_{\mathrm{A}}$ : activation energy(J/mole)
k: rate constant
R: $8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mole}$
T: temperature in Kelvin
A: frequency factor

## Arrhenius Example:

## $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{2}(\mathrm{~g})$

A plot of Ink versus 1/T for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ had a slope of
$-1.2 \times 10^{4} \mathrm{~K}$. Calculate $\mathrm{E}_{\mathrm{A}}$.

## Arrhenius Example2:

Activation energy can be determined by measuring the rate at two different temperatures.

$$
\operatorname{In} \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)
$$

Ex:
Estimate a value of $k$ at 375 K for decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ if $\mathrm{k}=2.5 \times 10^{-3} \mathrm{~s}^{-1}$ at 332 K.

## Reaction Mechanism:

Chemical reactions can occur in a single step or in a series of small steps.
Reaction mechanism is a series of simple steps that leads from initial reactants to products.
elementary reaction - Single step in an overall reaction mechanism.

## Reaction Mechanism cont...:

Reaction mechanism must:

1) Account for the known rate law.
2) Agree with the stoichiometry of the overall net equation.
Ex: Consider the formation of nitrosyl fluoride.

$$
\begin{gathered}
2 \mathrm{NO}+\mathrm{F}_{2} \rightarrow 2 \mathrm{ONF} \\
\text { rate }=\mathbf{k}[\mathbf{N O}]\left[\mathbf{F}_{2}\right]
\end{gathered}
$$

## Catalysis:

A catalyst speeds up the rate of a chemical reaction and is not used up in the process.
Ex:
Catalysed Depletion of ozone.
Step 1: $\mathrm{O}_{3}+\mathrm{Cl} \rightarrow \mathrm{ClO}+\mathrm{O}_{2}$
Step 2: $\mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{O}_{2}$
NET: $\mathrm{O}_{\mathbf{3}}+\mathrm{O} \rightarrow \mathbf{2 O}_{\mathbf{2}}$
Cl: catalyst. Required! Not consumed!

