Chemical Kinetics:

The study of the rate at which chemical reactions occur.

 $reactant \rightarrow product$ $rate = \frac{-\Delta[reactant]}{\Delta t} = \frac{\Delta[product]}{\Delta t}$

∆[reactant]: change in reactant concentration.
∆[product]: change in product concentration.
∆t: time period(t_{FINAL} - t_{INITIAL})

General Rate of a Reaction:

For

$\frac{\mathbf{rR}}{\text{general rate}} \rightarrow \frac{\mathbf{pP}}{r}$ $\frac{1}{r} \times \frac{-\Delta[R]}{\Delta t} = \frac{1}{p} \times \frac{\Delta[P]}{\Delta t}$

Ex:

 $C_{6}H_{12}O_{6} \rightarrow 2C_{2}H_{5}OH + 2CO_{2}$ rate = $\frac{-\Delta[C_{6}H_{12}O_{6}]}{\Delta t} = \frac{1}{2} \times \frac{\Delta[C_{2}H_{5}OH]}{\Delta t}$

Calculating Reaction Rates:

Ex: Calculate the reaction rate in terms of A and C for the following:

- $A + 2B \rightarrow 3C + 2D$
- if at some time [A] = 0.4658 M and that 125 seconds later, [A] = 0.4282 M.

Rate Laws and Reaction Order:

Reaction rates depend on reactant concentration.

 $aA + bB \rightarrow products$ Rate Law relates reactant concentrations to reaction rates.

$Rate = k[A]^m[B]^n$

- k: rate constant
- m, n: exponents

[A], [B]: concentration of reactants in molarity

Reaction Order:

Reaction order refers to the values of the exponents in a rate law. In other words the value of m and n.

Example:

$Rate = k[A]^2[B]$

Rate 2nd order in A, 1st order in B, and 3rd order overall.

Method of Initial Rates:

Used to determine exponents. Consider the following.

	A +	$B \rightarrow$	C
Exp#	[A]	[B]	Rate(M/s)
1	0.15 M	0.15 M	0.048
2	0.30 M	0.15 M	0.192
3	0.15 M	0.30 M	0.096
4	0.30 M	0.30 M	0.384

From data: Rate = $k[A]^2[B]$

First Order Reaction:

 $A \rightarrow products$

Rate = k[A] <u>Integrated Rate Law:</u> $In \frac{[A]_t}{[A]_0} = -kt$

$$[A]_{o} = [A] \text{ at } t = 0 \text{ s.}$$

 $[A]_{t} = [A] \text{ at time t.}$

- k = rate constant.
- t = time.

Integrated Rate Law Example:

Ex:

$2H_2O_2(aq) \rightarrow 2H_2O(aq) + O_2(g)$

If the reaction is first order and $k = 1.8 \times 10^{-5} \text{ s}^{-1}$ at 20 °C, and the initial concentration of H₂O₂ is 0.30 M.

a) Calculate the concentration of H₂O₂ after 4.00 hours?

Integrated Rate Law Example cont...:

- b) How long will it take the concentration to drop to 0.12 M?
- c) How long will it take for 90% of the H₂O₂ to decompose?

Half-Life for First Order:

Time for the reactant concentration to decrease by half.

For First Order Reactions,

 $t_{1/2} = \frac{\text{In2}}{k}$

Second Order Reactions:

For a single reactant.

$A \rightarrow products$

Rate $= k[A]^2$

Integrated Rate Law

Half Life For Second Order:

$$\mathbf{t}_{1/2} = \frac{1}{\mathbf{k}[\mathbf{A}]_{\mathrm{o}}}$$

Example:

The second order decomposition of HI(g) at 700 K is as follows: $HI(g) \rightarrow 1/2H_2(g) + 1/2I_2(g)$ Rate $= k[HI]^2$ Calculate the half life if the initial concentration of HI is 1.00 M and $k = 0.0012 M^{-1} \cdot s^{-1}$.

Chemical Kinetic Theories: Collision Theory:

If molecules, atoms, or ions collide into each other with enough energy, existing bonds will be broken and products will be formed.

Activation Energy(E_a): The minimum energy required in a collision for a reaction to occur.

Orientation of molecules is important.

Proper Orientation

REACTION OCCURS

Not Proper Orientation

NO REACTION

Transition State Theory:

- **Reactants come together, form an activated complex, and dissociate into products.**
- **Consider the reaction:**
- $I^- + CH_3 Br \rightarrow I -CH_3 -Br \rightarrow I CH_3 + Br^-$

Activated Complex Transition State

Arrhenius Equation:

Relates reaction rate to temperature.

$$Ink = \frac{-E_A}{RT} + InA$$

- **E**_A: activation energy(J/mole)
- k: rate constant
- **R: 8.314 J/K·mole**
- **T: temperature in Kelvin**
- A: frequency factor

Arrhenius Example: $N_2O_5(g) \rightarrow 2NO_2(g) + O_2(g)$

A plot of Ink versus 1/T for the decomposition of $N_2O_5(g)$ had a slope of -1.2×10⁴ K. Calculate E_A .

Arrhenius Example2:

Activation energy can be determined by measuring the rate at two different temperatures.

Ex:

Estimate a value of k at 375 K for

decomposition of $N_2O_5(g)$ if $k = 2.5 \times 10^{-3} \text{ s}^{-1}$ at 332 K.

Reaction Mechanism:

- Chemical reactions can occur in a single step or in a series of small steps.
- Reaction mechanism is a series of simple steps that leads from initial reactants to products.
- elementary reaction Single step in an overall reaction mechanism.

Reaction Mechanism cont...:

- **Reaction mechanism must:**
- 1) Account for the known rate law.
- 2) Agree with the stoichiometry of the overall net equation.
- **Ex: Consider the formation of nitrosyl fluoride.**

$$2NO + F_2 \rightarrow 2ONF$$

rate = $k[NO][F_2]$

Catalysis:

A catalyst speeds up the rate of a chemical reaction and is <u>not</u> used up in the process. Ex:

- **Catalysed Depletion of ozone.**
- Step 1: $O_3 + Cl \rightarrow ClO + O_2$
- Step 2: ClO + O \rightarrow Cl + O₂
- NET: $O_3 + O \rightarrow 2O_2$

Cl: catalyst. Required! Not consumed!