Chemical Equilibrium($\equiv \mathrm{m}$):

Consider the following reaction,
$\mathbf{N}_{2}(\mathrm{~g}) \quad+\mathbf{3 H} \mathbf{2}(\mathrm{g}) \leftrightarrow \mathbf{2} \mathbf{N H}_{3}(\mathrm{~g})$
Typical equilibriums,
$\mathbf{N}_{2}(\mathrm{~g}) \quad+\mathbf{3} \mathbf{H}_{2}(\mathrm{~g}) \leftrightharpoons \mathbf{2} \mathbf{N H}_{3}(\mathrm{~g})$
\leftrightharpoons denotes a reversible reaction and an equilibrium.

Ex:2

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Equilibrium Constant(K):

$$
\mathrm{K}=\frac{[\text { products }]}{[\text { reactants }]}
$$

[reactants] = concentration of reactants [products] = concentration of products

For a general equilibrium:

$$
\mathbf{a A}+\mathbf{b B} \leftrightharpoons \mathbf{c C}+\mathbf{d D}
$$

$$
\mathrm{K}=\frac{[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

For the equilibrium:

$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons \mathbf{2 \mathrm { H } _ { 2 }} \mathbf{O}(\mathrm{g})+2 \mathrm{Cl}_{2}(\mathrm{~g})$

$$
\mathrm{K}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}\left[\mathrm{Cl}_{2}\right]^{2}}{[\mathrm{HCl}]^{4}\left[\mathrm{O}_{2}\right]}
$$

Equilibrium Constant $\left(\mathbf{K}_{c}\right)$:

$\mathbf{K}_{\mathbf{c}}:$ Equilibrium constant where the concentration of substances are in molarity.

Ex: Calculate $\mathbf{K}_{\mathbf{c}}$ for the following equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \leftrightharpoons \quad 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

if at equilibrium $(\equiv \mathrm{m})\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=4.27 \times 10^{-2} \mathrm{M}$ and $\left[\mathrm{NO}_{2}\right]=1.41 \times 10^{-2} \mathrm{M}$.

Equilibrium Constant $\left(K_{c}\right)$ cont...:

 The magnitude of K_{c} indicates the position of the equilibrium.$$
\mathrm{K}=\frac{\text { [products] }}{[\text { reactants }]}
$$

$K_{c}>1$ equilibrium favors formation of products.
$K_{c}<1$ equilibrium favors formation of reactants.

Predicting the Direction of a Reaction:

The reaction quotient (Q) is used to determine if a system is at equilibrium.

$$
\mathrm{Q}=\frac{[\text { products }]}{[\text { reactants }]}
$$

Q: Reaction quotient
Q is calculated the same as K_{c}.

Predicting the Direction of a

Reaction cont...:

Ex: $\mathbf{A} \quad \leftrightharpoons \quad$ B $\quad K_{c}=\mathbf{5 . 0}$
If $[A]=0.50 \mathrm{M}$ and $[B]=4.0 \mathrm{M}$, calculate Q and predict the direction.
$\mathbf{Q}=\mathbf{K}_{\mathrm{c}} \quad$ Reaction at $\equiv \mathrm{m}$.
Q > \mathbf{K}_{c} Reaction will proceed from right to left to obtain $\equiv \mathrm{m}$.
$\mathbf{Q}<\mathbf{K}_{\mathrm{c}} \quad$ Reaction will proceed from left to right to obtain $\equiv \mathrm{m}$.

Example:

Ex:
If $0.100 \mathrm{~mol} \mathrm{PCl}_{5}(\mathrm{~g}), 0.0500 \mathrm{~mol} \mathrm{PCl}_{3}(\mathrm{~g})$, and 0.0300 mol of Cl_{2} is placed in a 1.00 L vessel, is the system at equilibrium, and if not which direction will the reaction move.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \leftrightharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=0.0415
$$

Homogeneous and Heterogeneous

Equilibria

Homogeneous Equilibria- Equilibria between substances in the same phase.

Heterogeneous Equilibria- Equilibria between substances in two or more phases.

Examples:

Ex: $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \leftrightharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
 $$
\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]
$$

Ex:2 $\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightharpoons \mathrm{CaO}(\mathrm{s}) \quad+\mathrm{CO}_{2}(\mathrm{~g})$

$$
\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}(\mathrm{~g})\right]
$$

Ex:3

$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}(\mathrm{~g})\right]^{4}}{\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]^{4}}
$$

Calculating Equilibrium Concentrations:

K_{c} expressions can be used to determine equilibrium concentrations.

Ex:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=54.5
$$

A given amount of HI is placed in a 1.00 L vessel at $425^{\circ} \mathrm{C}$. If the equilibrium concentration of HI is 0.50 M , calculate the equilibrium concentrations of H_{2} and $\mathrm{I}_{\mathbf{2}}$.

Example:2

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \mathrm{K}_{\mathrm{c}}=0.771
$$

If 0.0100 mol of $\mathrm{H}_{\mathbf{2}}$ and $\mathbf{0 . 0 1 0 0} \mathrm{mol}$ of CO_{2} are mixed in a one litre vessel at $750{ }^{\circ} \mathrm{C}$, what are the equilibrium concentration of all species at $\equiv \mathbf{m}$?

The Equilibrium Constant $\left(\mathbf{K}_{p}\right)$:

For the equilibrium

$$
\begin{gathered}
\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}(\mathrm{~g})\right]
\end{gathered}
$$

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{p}_{\mathrm{CO}_{2}}
$$

Relationship between K_{p} and K_{c} :

$$
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}
$$

$\Delta \mathbf{n}=$ moles of gas products - moles of gas reactants

T = temperature in Kelvins
R = Gas Constant (0.0821 L•atm/K•mole)

Ex:

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \leftrightharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

$\Delta \mathrm{n}=\mathbf{2 - 1}=+\mathbf{1}$

$$
\begin{gathered}
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{1} \\
\mathrm{~K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}} \mathrm{RT}
\end{gathered}
$$

Ex:2

$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{COCl}_{2}(\mathrm{~g})$

$\Delta \mathrm{n}=1-2=-1$
$\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{-1}$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{K}_{\mathrm{c}}}{\mathrm{RT}}
$$

Ex:3

$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{HI}(\mathrm{g})$

$\Delta \mathrm{n}=2$ - $2=0$

$$
\begin{gathered}
\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{0} \\
\mathrm{~K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}
\end{gathered}
$$

Le Chatelier's Principle:

When an equilibrium is disturbed it will cause the equilibrium to shift in a direction that minimizes the effect and establish a new equilibrium.

Concentration Changes
Pressure Changes
Temperature Changes

