<u>Chemical Equilibrium(=m):</u>

- Typical equilibriums, $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$

 $H_2O(l) \Leftrightarrow H_2O(g)$

Ex:2

Equilibrium Constant(K):

 $K = \frac{[products]}{[reactants]}$

[reactants] = concentration of reactants
[products] = concentration of products

For a general equilibrium: $aA + bB \Leftrightarrow cC + dD$

 $K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$

For the equilibrium: $4HCl(g) + O_2(g) \Rightarrow 2H_2O(g) + 2Cl_2(g)$

 $K = \frac{[H_2O]^2[Cl_2]^2}{[HCl]^4[O_2]}$

Equilibrium Constant(K_c):

- **K**_c: Equilibrium constant where the concentration of substances are in molarity.
- **Ex: Calculate K_c for the following equilibrium**
 - $N_2O_4(g) \Leftrightarrow 2NO_2(g)$
- if at equilibrium(\equiv m) [N₂O₄] = 4.27×10⁻² M and [NO₂] = 1.41×10⁻² M.

Equilibrium Constant(K_c) cont...:

The magnitude of K_c indicates the position of the equilibrium.

 $K = \frac{[products]}{[reactants]}$

- K_c > 1 equilibrium favors formation of products.
- K_c < 1 equilibrium favors formation of reactants.

Predicting the Direction of a Reaction:

The reaction quotient(Q) is used to determine if a system is at equilibrium.

$$Q = \frac{[products]}{[reactants]}$$

Q: Reaction quotient **Q** is calculated the same as K_c .

Predicting the Direction of a

Reaction cont...:

- **Ex:** A \Rightarrow B $\mathbf{K}_{c} = 5.0$
- If [A] = 0.50 M and [B] = 4.0 M, calculate Q and predict the direction.
- $Q = K_c$ Reaction at $\equiv m$.
- Q > K_c Reaction will proceed from right to left to obtain ≡m.

 $Q < K_c$ Reaction will proceed from left to right to obtain =m.

Example:

Ex:

If 0.100 mol $PCl_5(g)$, 0.0500 mol $PCl_3(g)$, and 0.0300 mol of Cl_2 is placed in a 1.00 L vessel, is the system at equilibrium, and if not which direction will the reaction move.

 $PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$ $K_c = 0.0415$

Homogeneous and Heterogeneous Equilibria

<u>Homogeneous Equilibria</u>- Equilibria between substances in the same phase.

<u>Heterogeneous Equilibria</u>- Equilibria between substances in two or more phases.

Examples: $H_2O(l) \Leftrightarrow H_2O(g)$ Ex: $K_{c} = [H_{2}O(g)]$ $CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$ **Ex:2** $K_{c} = [CO_{2}(g)]$ **Ex:3** $3Fe(s) + 4H_2O(g) \Rightarrow Fe_3O_4(s) + 4H_2(g)$ $K_{c} = \frac{[H_{2}(g)]^{4}}{[H_{2}O(g)]^{4}}$

Calculating Equilibrium Concentrations:

- K_c expressions can be used to determine equilibrium concentrations.
- Ex:
- $H_2(g) + I_2(g) \Rightarrow 2HI(g) K_c = 54.5$
- A given amount of HI is placed in a 1.00 L vessel at 425°C. If the equilibrium concentration of HI is 0.50 M, calculate the equilibrium concentrations of H_2 and I_2 .

Example:2

 $\mathbf{H}_2(\mathbf{g}) + \mathbf{CO}_2(\mathbf{g}) \Leftarrow \mathbf{H}_2\mathbf{O}(\mathbf{g}) + \mathbf{CO}(\mathbf{g}) \mathbf{K}_c = 0.771$

If 0.0100 mol of H_2 and 0.0100 mol of CO_2 are mixed in a one litre vessel at 750 °C, what are the equilibrium concentration of all species at $\equiv m$?

The Equilibrium Constant(K_p):

For the equilibrium

 $CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$ $K_c = [CO_2(g)]$

 $K_p = p_{CO_2}$

Relationship between K_p and K_c:

 $K_{p} = K_{c} (RT)^{\Delta n}$

- $\Delta n = moles of gas products moles of gas reactants$
- **T** = temperature in Kelvins
- R = Gas Constant(0.0821 L·atm/K·mole)

$PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$ $\Delta n = 2 - 1 = +1$

$K_{p} = K_{c} (RT)^{1}$ $K_{p} = K_{c} RT$

$CO(g) + Cl_2(g) \Leftrightarrow COCl_2(g)$ $\Delta n = 1 - 2 = -1$

$K_{p} = K_{c} (RT)^{-1}$ $K_{p} = \frac{K_{c}}{RT}$

$H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$ $\Delta n = 2 - 2 = 0$

$K_{p} = K_{c} (RT)^{0}$ $K_{p} = K_{c}$

Le Chatelier's Principle:

When an equilibrium is disturbed it will cause the equilibrium to shift in a direction that minimizes the effect and establish a new equilibrium.

Concentration Changes

Pressure Changes

Temperature Changes