
Buffers:

Buffers:

A buffer is an aqueous system that allows only small changes in pH on the addition of acids or bases.

- Consider a system consisting of equal amounts of $HC_2H_3O_2$ and $C_2H_3O_2^-$.
- If strong base added: $HC_2H_3O_2(aq) + OH^{-}(aq) \rightarrow C_2H_3O_2^{-}(aq) + H_2O(l)$
- If strong acid added: $C_2H_3O_2(aq) + H^+(aq) \rightarrow HC_2H_3O_2(aq)$

Identifying Buffers:

- Buffers consist of a weak acid and its corresponding conjugate base.
- Ex: Is the system NH₃/NH₄Cl a buffer?
- **Ex: Is the system HCl/Cl⁻ a buffer?**

Calculating the pH of Buffer Systems:

- Ex:
- Calculate the pH of a buffer consisting of 1 M NH_3 and 1 M NH_4 Cl. $K_B = 1.8 \times 10^{-5}$ Answer: pH = 9.26
- Can use K_A or K_B to determine pH.

DIFFICULT!!!

Henderson-Hasselbach Equation:

$$pH = pK_A + Log \frac{[base]}{[acid]}$$
$$pH = pK_A + Log \frac{moles of base}{moles of acid}$$

Consider a buffer consisting of the weak acid HA and its conjugate base A⁻.

$$pH = pK_A + Log \frac{[A^-]}{[HA]}$$

Where $pK_A = -Log(K_A)$

Buffer Examples cont...

Ex:2

What is the pH of a buffer prepared by dissolving 25.5 g of NaC₂H₃O₂ in 0.550 M HC₂H₃O₂(aq) to prepare a 500.0 mL buffer? $K_A = 1.8 \times 10^{-5}$

Ex:3

What mass of $NaC_2H_3O_2$ must be dissolved in 300.0 mL of 0.250 M $HC_2H_3O_2$ to prepare a buffer of pH = 5.09?

Buffer Examples cont...

Ex:4

What is the effect of adding 0.025 moles of HCl to 500.0 mL of a buffer consisting of 0.100 M HC₂H₃O₂ and 0.100 M NaC₂H₃O₂? $K_A = 1.8 \times 10^{-5}$

HCl: STRONG ACID HCl(aq) \rightarrow H⁺(aq) + Cl⁻(aq)

Buffer: HC₂H₃O₂ and C₂H₃O₂⁻

NOTE: $0.500 L \times 0.100 M = 0.0500 mol$

- **Buffer base Buffer Acid** From HCl H^+ $C_2H_3O_2 \rightarrow HC_2H_3O_2$ +0.0500 mol I: 0.025 mol 0.0500 mol C:-0.025 mol -0.025 mol +0.025 mol 0.0250 mol 0.0750 mol **E:** ()
- **NOTE: H⁺ from HCl completely neutralized!! Only buffer left.**

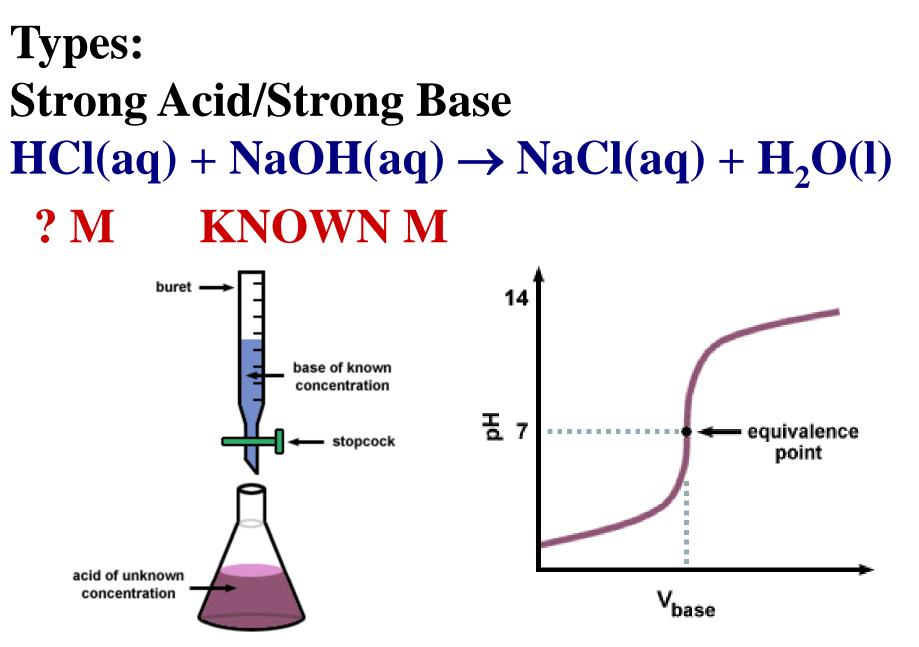
Ex:5

What is the effect of adding 0.025 moles of NaOH to 500.0 mL of a buffer consisting of 0.100 M HC₂H₃O₂ and 0.100 M NaC₂H₃O₂? $K_A = 1.8 \times 10^{-5}$

From

NaOHBuffer AcidBuffer Base OH^- + $HC_2H_3O_2 \rightarrow C_2H_3O_2^- + H_2O$ I: 0.025 mol0.0500 mol0.0500 molC:-0.025 mol-0.025 mol+0.025 molE:00.0250 mol0.0750 mol

Ex:6


What is the effect of adding 0.100 moles of HCl to 500.0 mL of a buffer consisting of 0.100 M HC₂H₃O₂ and 0.100 M NaC₂H₃O

- **From HCl Buffer base** H+ +
- I: 0.100 mol
- C:-0.0500 mol
- E: 0.0500 mol

- - 0.0500 mol -0.0500 mol

- **Buffer Acid** $C_2H_3O_2 \rightarrow HC_2H_3O_2$
 - 0.0500 mol +0.0500 mol 0.100 mol
- **NOTE: Buffer capacity exceeded!!**

Acid-Base Titrations:

Acid-Base Titrations cont...: Weak Acid/Strong Base $HC_2H_3O_2(aq) + NaOH(aq) \rightarrow NaC_2H_3O_2(aq)$ +H,0**KNOWN M ?** M 14 equivalence point 풉 7

V_{base}

Predicting the pH of an Acid-Base Mixture:

Strong Base – Strong Acid HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H₂O(l)

Ex:

Consider the titration of 25.0 mL of 1.00 M HCl with 1.00 M NaOH. Calculate the pH on the addition of 10.0 mL, 25.0 mL, and 40.0 mL of the NaOH solution.

Ex: Strong Base – Strong Acid: 10.0 mL of 1.00 M NaOH:

HCl + NaOH \rightarrow NaCl + H₂O

Ι	0.0250 mol	0.0100 mol	0	-
С	-0.0100 mol	-0.0100 mol	+0.0100 mol	+0.0100 mol
F	0.0150 mol	0	0.0100 mol	0.0100 mol

[HCl] = 0.0150 mol/0.0350 L = 0.429 MThus pH = 0.368

Ex: Strong Base – Strong Acid: 25.0 mL of 1.00 M NaOH: HCl + NaOH → NaCl + H₂O

Ι	0.0250 mol	0.0250 mol	0	-
С	-0.0250 mol	-0.0250 mol	+0.0250 mol	+0.0250 mol
F	0	0	0.0250 mol	0.0250 mol

Equivalence point. Only salt water present. Thus pH = 7

Ex: Strong Base – Strong Acid: 40.0 mL of 1.00 M NaOH: HCl + NaOH → NaCl + H₂O

Ι	0.0250 mol	0.0400 mol	0	-
С	-0.0250 mol	-0.0250 mol	+0.0250 mol	+0.0250 mol
F	0	0.0150 mol	0.0250 mol	0.0250 mol

[NaOH] = 0.0150 mol/0.0650 L = 0.231 MThus pH = 13.4

Predicting the pH of an Acid-Base Mixture:

- **Strong Base Weak Acid**
- $$\begin{split} \mathrm{HC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}(\mathrm{aq}) + \mathrm{NaOH}(\mathrm{aq}) &\rightarrow \mathrm{NaC}_{2}\mathrm{H}_{3}\mathrm{O}_{2}(\mathrm{aq}) \\ &+ \mathrm{H}_{2}\mathrm{O} \end{split}$$
- Consider the titration of 25.0 mL of 1.00 M HC₂H₃O₂ with 1.00 M NaOH. Calculate the pH on the addition of 10.0 mL, 25.0 mL, and 40.0 mL of the NaOH solution.

Ex: Strong Base – Weak Acid: 10.0 mL of 1.00 M NaOH: HC₂H₃O₂ + NaOH → NaC₂H₃O₂ + H₂O

Ι	0.0250 mol	0.0100 mol	0	-
С	-0.0100 mol	-0.0100 mol	+0.0100 mol	+0.0100 mol
F	0.0150 mol	0	0.0100 mol	0.0100 mol

System a Buffer!! Thus pH = 4.56

Ex: Strong Base – Weak Acid:

25.0 mL of 1.00 M NaOH: $HC_2H_3O_2 + NaOH \rightarrow NaC_2H_3O_2 + H_2O$

Ι	0.0250 mol	0.0250 mol	0	-
С	-0.0250 mol	-0.0250 mol	+0.0250 mol	+0.0250 mol
F	0	0	0.0250 mol	0.0250 mol

System only contains a weak base and water. pH determined by weak base.

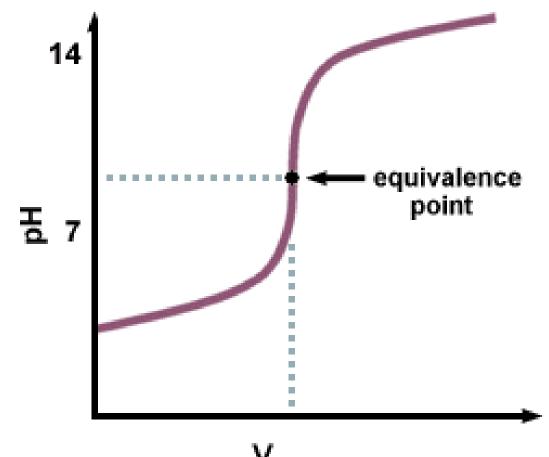
- Ex: Strong Base Weak Acid cont...:
- $[C_{2}H_{3}O_{2}^{-}] = 0.0250 \text{ mol/}0.0500 \text{ L} = 0.500 \text{ M}$ $C_{2}H_{3}O_{2}^{-} + H_{2}O \Rightarrow HC_{2}H_{3}O_{2} + OH^{-}$

Ι	0.500 M	-	0	-
C	-X		+X	+ X
E	0.500-X		X	Χ

 $K_B = 5.56 \times 10^{-10} = \frac{X \cdot X}{0.500 - X}$

 $X = [OH^{-}] = 1.67 \times 10^{-5} M$, thus pH = 9.22

Ex: Strong Base – Weak Acid:

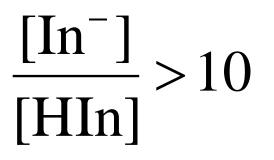

40.0 mL of 1.00 M NaOH: $HC_2H_3O_2 + NaOH \rightarrow NaC_2H_3O_2 + H_2O$

Ι	0.0250 mol	0.0400 mol	0	-
С	-0.0250 mol	-0.0250 mol	+0.0250 mol	+0.0250 mol
F	0	0.0150 mol	0.0250 mol	0.0250 mol

[NaOH] = 0.0150 mol/0.0650 L = 0.231 MThus pH = 13.4

Acid-Base Indicators:

During acid base titration pH changes abruptly at equivalence point.


Acid-Base Indicators:

An acid base indicator is a weak acid whose color depends on the pH of the solution. HIn: weak acid(acid color) In⁻: conjugate base(basic color)

HIn(aq) \Leftarrow H⁺(aq)+In⁻(aq)Acid colorBase Color

Acid-Base Indicators cont...:

 $pH = pK_{HIn} + Log \frac{[In^-]}{[HIn]}$

 $\frac{[In^{-}]}{[HIn]} < 0.1$

Base Color

Acid color

Some Indicators:

Indicator	Acid Color	Base Color	pH Range
phenolphthalien	clear	red	8-10
bromophenol blue	yellw	blue	3-4.5
Methyl Orange	red	yellw	3-5

Ex:

The indicator methyl red has a pK_{HIn} of 4.95. If the indicator is placed in a solution with a pH = 4.74, is it in the acid or base form?

Solubility Equilibria:

- Solubility equilibria centres on the study of heterogeneous systems.
- An aqueous solution containing aqueous NaCl and solid NaCl contains the following equilibrium.

 $NaCl(s) \Leftarrow Na^{+}(aq) + Cl^{-}(aq)$ $K_{sp} = [Na^{+}(aq)][Cl^{-}(aq)]$

This equilibrium is described by the equilibrium constant, K_{sp} (solubility product).

Examples: Ex: $Mg(OH)_2(s) \Leftrightarrow Mg^{2+}(aq) + 2OH^{-}(aq)$ $K_{sp} = [Mg^{2+}(aq)][OH^{-}(aq)]^2$ Ex:2

$\begin{array}{rl} Bi_2S_3(s) & \Leftarrow \ 2Bi^{3+}(aq) + 3S^{2-}(aq) \\ & K_{sp} = [Bi^{3+}(aq)]^2[S^{2-}(aq)]^3 \end{array}$

Ex:3 $Hg_2Cl_2(s) \iff Hg_2^{2+}(aq) + 2Cl^{-}(aq)$ $K_{sp} = [Hg_2^{2+}(aq)][Cl^{-}(aq)]^2$

<u>solubility</u> – Concentration of a saturated solution.

Denoted by "s".

If we know the solubility we can calculate $\rm K_{sp}$ and likewise given $\rm K_{sp}$ we can calculate the solubility.

Examples:

Ex:

- Silver chloride has a solubility of 1.31×10^{-5} M. Calculate K_{sp}.
- **Ex:2**
- **Calculate the solubility of PbI₂.**

 $K_{sp} = 7.1 \times 10^{-9}$

Common-Ion Effect and Solubility

- The solubility of a slightly soluble solute is decreased in the presence of a common ion.
- **Consider PbI₂** in the presence of KI.
 - $PbI_2(s)$ \Leftarrow $Pb^{2+}(aq) +$ $2I^{-}(aq)$ $PbI_2 ppt$ $[Pb^{2+}(aq)]$ $[I^{-}(aq)]$ isoutdecreasesgreater

Examples:

Ex:3

What is the solubility of PbI₂ in 0.10 M KI?

 $K_{sp} = 7.1 \times 10^{-9}$

Reaction Quotient(Q):

Used to determine if a solution is dilute, saturated, or supersaturated.

Q = K_{sp}saturatedQ < K_{sp}</td>unsaturatedQ > K_{sp}supersaturated(ppt occurs)

Reaction Quotient(Q) cont...:

- Ex:
- If AgNO₃ and KI are mixed to obtain a solution with $[Ag^+(aq)] = 0.010$ M and $[I^-(aq)] = 0.015$ M, is the solution unsaturated, saturated, or supersaturated? $K_{sp}(AgI) = 8.5 \times 10^{-17}$