Buffers:

Buffers:

A buffer is an aqueous system that allows only small changes in $\mathbf{p H}$ on the addition of acids or bases.
Consider a system consisting of equal amounts of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.

If strong base added: $\begin{array}{ll}\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow & \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})+ \\ \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\end{array}$ If strong acid added:
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$

Identifying Buffers:

Buffers consist of a weak acid and its corresponding conjugate base.

Ex: Is the system $\mathrm{NH}_{3} / \mathbf{N H}_{4} \mathbf{C l}$ a buffer?
Ex: Is the system $\mathrm{HCl} / \mathrm{Cl}^{-}$a buffer?

Calculating the pH of Buffer Systems:

Ex:
Calculate the pH of a buffer consisting of 1 M NH_{3} and $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$.
$\mathrm{K}_{\mathrm{B}}=1.8 \times 10^{-5}$
Answer: $\mathrm{pH}=9.26$
Can use K_{A} or K_{B} to determine $\mathbf{p H}$.

Henderson-Hasselbach Equation:

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{\mathrm{A}}+\log \frac{[\text { base }]}{[\text { acid }]} \\
\mathrm{pH}=\mathrm{pK}_{\mathrm{A}}+\log \frac{\text { moles of base }}{\text { moles of acid }}
\end{gathered}
$$

Consider a buffer consisting of the weak acid HA and its conjugate base A :

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{A}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Where $\mathbf{p K} \mathrm{K}_{\mathrm{A}}=-\log \left(\mathrm{K}_{\mathrm{A}}\right)$

Buffer Examples cont...

Ex:2
What is the $\mathbf{p H}$ of a buffer prepared by dissolving 25.5 g of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ in 0.550 M $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$ to prepare a 500.0 mL buffer?
$K_{A}=1.8 \times 10^{-5}$
Ex:3
What mass of $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ must be dissolved in 300.0 mL of $0.250 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ to prepare a buffer of $\mathbf{p H}=5.09$?

Buffer Examples cont...

Ex:4

What is the effect of adding 0.025 moles of HCl to 500.0 mL of a buffer consisting of $0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$? $K_{A}=1.8 \times 10^{-5}$

HCl: STRONG ACID $\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

Buffer: $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$

NOTE: $0.500 \mathrm{~L} \times 0.100 \mathrm{M}=\mathbf{0 . 0 5 0 0} \mathrm{mol}$

From HCl Buffer base $\mathrm{H}^{+} \quad+$
 I: 0.025 mol
 0.0500 mol
 $-0.025 \mathrm{~mol}$ 0.0250 mol
 Buffer Acid $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-} \quad \rightarrow \quad \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
 0.0500 mol
 + 0.025 mol
 0.0750 mol

NOTE: \mathbf{H}^{+}from HCl completely neutralized!! Only buffer left.

Ex:5

What is the effect of adding 0.025 moles of NaOH to 500.0 mL of a buffer consisting of $0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$? $K_{A}=1.8 \times 10^{-5}$
From
NaOH

Buffer Acid Buffer Base

 $\mathrm{OH}^{-}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}$| I: 0.025 mol | 0.0500 mol | 0.0500 mol |
| :--- | :---: | :---: |
| C: $: \mathbf{- 0 . 0 2 5 ~ \mathrm { mol }}$ | $-\mathbf{0 . 0 2 5} \mathrm{mol}$ | +0.025 mol |
| E: | 0 | 0.0250 mol |
| | | 0.0750 mol |

Ex:6

What is the effect of adding 0.100 moles of $\mathbf{H C l}$ to 500.0 mL of a buffer consisting of $0.100 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and $0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}$

From HCl \mathbf{H}^{+} $+$ Buffer base $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
0.0500 mol

- 0.0500 mol 0

Buffer Acid
$\rightarrow \quad \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
0.0500 mol +0.0500 mol 0.100 mol

NOTE: Buffer capacity exceeded!!

Acid-Base Titrations:

Types:

Strong Acid/Strong Base

 $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$? M KNOWN M

Acid-Base Titrations cont...:

Weak Acid/Strong Base
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
? M

KNOWN M

 $+\mathrm{H}_{2} \mathrm{O}$

Predicting the pH of an Acid-Base

Mixture:
Strong Base - Strong Acid $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathbf{l})$

Ex:
Consider the titration of 25.0 mL of 1.00 M HCl with 1.00 M NaOH . Calculate the $\mathbf{p H}$ on the addition of $\mathbf{1 0 . 0} \mathbf{~ m L}, 25.0 \mathrm{~mL}$, and 40.0 mL of the NaOH solution.

Ex: Strong Base - Strong Acid: 10.0 mL of 1.00 M NaOH : $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

I	0.0250 mol	0.0100 mol	0	-
C	$\begin{gathered} -0.0100 \\ \mathrm{~mol} \end{gathered}$	- $\mathbf{0 . 0 1 0 0} \mathrm{mol}$	$\begin{gathered} +0.0100 \\ \mathrm{~mol} \end{gathered}$	$\begin{gathered} +0.0100 \\ \mathbf{m o l} \end{gathered}$
F	0.0150 mol	0	0.0100 mol	$\begin{gathered} 0.0100 \\ \mathrm{~mol} \end{gathered}$

$[\mathrm{HCl}]=0.0150 \mathrm{~mol} / 0.0350 \mathrm{~L}=0.429 \mathrm{M}$

 Thus $\mathrm{pH}=0.368$Ex: Strong Base - Strong Acid: 25.0 mL of 1.00 M NaOH : $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

I	0.0250 mol	0.0250 mol	0	-
C	$\begin{gathered} -0.0250 \\ \mathrm{~mol} \end{gathered}$	-0.0250 mol	$\begin{gathered} +0.0250 \\ \text { mol } \end{gathered}$	$\begin{gathered} +0.0250 \\ \text { mol } \end{gathered}$
F	0	0	0.0250 mol	$\begin{gathered} 0.0250 \\ \mathrm{~mol} \end{gathered}$

Equivalence point. Only salt water present. Thus $\mathbf{p H}=7$

Ex: Strong Base - Strong Acid:
40.0 mL of 1.00 M NaOH :
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

I	0.0250 mol	0.0400 mol	0	-
C	$\begin{gathered} -0.0250 \\ \mathrm{~mol} \end{gathered}$	- $\mathbf{0 . 0 2 5 0} \mathrm{mol}$	$\begin{gathered} +0.0250 \\ \mathrm{~mol} \end{gathered}$	$\begin{gathered} +0.0250 \\ \mathrm{~mol} \end{gathered}$
F	0	0.0150 mol	0.0250 mol	$\begin{gathered} 0.0250 \\ \mathrm{~mol} \end{gathered}$

$[\mathrm{NaOH}]=0.0150 \mathrm{~mol} / 0.0650 \mathrm{~L}=0.231 \mathrm{M}$ Thus pH = 13.4

Predicting the pH of an Acid-Base

Mixture:

Strong Base - Weak Acid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$ $+\mathrm{H}_{2} \mathrm{O}$

Consider the titration of 25.0 mL of 1.00 M $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ with 1.00 M NaOH . Calculate the $\mathbf{p H}$ on the addition of $10.0 \mathrm{~mL}, 25.0 \mathrm{~mL}$, and 40.0 mL of the NaOH solution.

Ex: Strong Base - Weak Acid: 10.0 mL of 1.00 M NaOH : $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$

I	0.0250 mol	0.0100 mol	0	-
C	$\begin{gathered} \hline-0.0100 \\ \mathrm{~mol} \end{gathered}$	- $\mathbf{0 . 0 1 0 0} \mathrm{mol}$	$\begin{gathered} +0.0100 \\ \mathbf{m o l} \end{gathered}$	$\begin{gathered} +0.0100 \\ \mathrm{~mol} \end{gathered}$
F	0.0150 mol	0	0.0100 mol	$\begin{gathered} 0.0100 \\ \mathrm{~mol} \end{gathered}$

System a Buffer!!

 Thus $\mathrm{pH}=4.56$
Ex: Strong Base - Weak Acid:

25.0 mL of $1.00 \mathrm{M} \mathrm{NaOH}:$ $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$

I	0.0250 mol	0.0250 mol	0	-
C	$-\mathbf{0 . 0 2 5 0}$ mol	$-\mathbf{0 . 0 2 5 0} \mathrm{mol}$	$\mathbf{+ 0 . 0 2 5 0}$ mol	$\mathbf{+ 0 . 0 2 5 0}$ mol
F	$\mathbf{0}$	0	$\mathbf{0 . 0 2 5 0} \mathbf{~ m o l}$	$\mathbf{0 . 0 2 5 0}$ mol

System only contains a weak base and water. pH determined by weak base.

Ex: Strong Base - Weak Acid

 cont...:$\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=0.0250 \mathrm{~mol} / 0.0500 \mathrm{~L}=0.500 \mathrm{M}$
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \quad+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}$

\mathbf{I}	$\mathbf{0 . 5 0 0} \mathbf{M}$	-	$\mathbf{0}$	-
\mathbf{C}	$-\mathbf{X}$		$+\mathbf{X}$	$+\mathbf{X}$
\mathbf{E}	$\mathbf{0 . 5 0 0}-\mathbf{X}$		\mathbf{X}	\mathbf{X}

$$
\mathrm{K}_{\mathrm{B}}=5.56 \times 10^{-10}=\frac{X \cdot X}{0.500-X}
$$

$\mathrm{X}=\left[\mathrm{OH}^{-}\right]=1.67 \times 10^{-5} \mathrm{M}$, thus $\mathrm{pH}=9.22$

Ex: Strong Base - Weak Acid:

40.0 mL of 1.00 M NaOH : $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$

I	0.0250 mol	0.0400 mol	0	-
C	$\begin{gathered} -0.0250 \\ \mathrm{~mol} \end{gathered}$	-0.0250 mol	$\begin{gathered} +0.0250 \\ \mathrm{~mol} \end{gathered}$	$\begin{gathered} +0.0250 \\ \mathrm{~mol} \end{gathered}$
F	0	0.0150 mol	0.0250 mol	$\begin{gathered} 0.0250 \\ \mathrm{~mol} \end{gathered}$

$[\mathrm{NaOH}]=0.0150 \mathrm{~mol} / 0.0650 \mathrm{~L}=0.231 \mathrm{M}$ Thus pH = 13.4

Acid-Base Indicators:

During acid base titration $\mathbf{~ p H}$ changes abruptly at equivalence point.

Acid-Base Indicators:

An acid base indicator is a weak acid whose color depends on the $\mathbf{p H}$ of the solution. HIn: weak acid(acid color)
In:: conjugate base(basic color)

$$
\begin{aligned}
& \mathrm{HIn}(\mathrm{aq}) \leftrightharpoons \mathbf{H}^{+}(\mathbf{a q}) \\
& \text { Acid color }+\mathbf{I n}^{-}(\mathbf{a q}) \\
& \text { Base Color }
\end{aligned}
$$

Acid-Base Indicators cont...:

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{HIn}}+\log \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]} \\
& \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}>10
\end{aligned} \frac{\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}<0.1 .
$$

Some Indicators:

> | Indicator | $\begin{array}{c}\text { Acid } \\ \text { Color }\end{array}$ | $\begin{array}{c}\text { Base } \\ \text { Color }\end{array}$ | $\begin{array}{c}\text { pH } \\ \text { Range }\end{array}$ |
| :---: | :---: | :---: | :---: |
| phenolphthalien | clear | red | $\mathbf{8 - 1 0}$ |
| bromophenol blue | yellw | blue | $\mathbf{3 - 4 . 5}$ |
| Methyl Orange | red | yellw | $\mathbf{3 - 5}$ | Ex: The indicator methyl red has a $\mathrm{pK}_{\mathrm{HIn}}$ of 4.95 . If the indicator is placed in a solution with a $\mathrm{pH}=4.74$, is it in the acid or base form?

Solubility Equilibria:

Solubility equilibria centres on the study of heterogeneous systems.

An aqueous solution containing aqueous NaCl and solid NaCl contains the following equilibrium.

$$
\begin{gathered}
\mathrm{NaCl}(\mathbf{s}) \leftrightharpoons \mathrm{Na}^{+}(\mathbf{a q})+\mathrm{Cl}^{-}(\mathbf{a q}) \\
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Na}^{+}(\mathbf{a q})\right]\left[\mathrm{Cl}^{-}(\mathbf{a q})\right]
\end{gathered}
$$

This equilibrium is described by the equilibrium constant, K_{sp} (solubility product).

Examples:

Ex:

$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \leftrightharpoons \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Mg}^{2+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]^{2}
$$

Ex:2
$\mathrm{Bi}_{2} \mathrm{~S}_{3}(\mathrm{~s}) \leftrightharpoons 2 \mathrm{Bi}^{3+}(\mathrm{aq})+3 \mathrm{~S}^{2-}(\mathrm{aq})$

$$
\mathbf{K}_{\mathrm{sp}}=\left[\mathrm{Bi}^{3+}(\mathbf{a q})\right]^{2}\left[\mathbf{S}^{2-(a q)}\right]^{3}
$$

Ex:3

$$
\begin{aligned}
\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s}) & \leftrightharpoons \mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Hg}_{2}{ }^{2+}(\mathrm{aq})\right][\mathrm{Cl}-(\mathrm{aq})]^{2}
\end{aligned}
$$

$\underline{K}_{\mathrm{sp}} \underline{\text { and Solubility: }}$

solubility - Concentration of a saturated

 solution.Denoted by " s ". If we know the solubility we can calculate $K_{\text {sp }}$ and likewise given $K_{\text {sp }}$ we can calculate the solubility.

Examples:

Ex:
Silver chloride has a solubility of $1.31 \times 10^{-5} \mathrm{M}$. Calculate $K_{\text {sp }}$.

Ex:2

Calculate the solubility of PbI_{2}.

$$
K_{s p}=7.1 \times 10^{-9}
$$

Common-Ion Effect and Solubility

 The solubility of a slightly soluble solute is decreased in the presence of a common ion.
Consider PbI_{2} in the presence of $\mathbf{K I}$.

$$
\mathbf{P b I}_{2}(\mathbf{s}) \leftrightharpoons \mathbf{P b}^{2+}(\mathbf{a q})+2 \mathbf{I}-(\mathbf{a q})
$$

$\mathbf{P b I}_{2} \mathbf{~ p p t}$ out
[$\left.\mathrm{Pb}^{2+}(\mathbf{a q})\right]$
[$\mathrm{I}^{-(a q)] ~ i s ~}$
decreases greater

Examples:

Ex:3

What is the solubility of PbI_{2} in 0.10 M KI ?

$K_{s p}=7.1 \times 10^{-9}$

Reaction Quotient(0):

Used to determine if a solution is dilute, saturated, or supersaturated.

$$
\begin{array}{ll}
\mathbf{Q}=\mathbf{K}_{\text {sp }} & \text { saturated } \\
\mathbf{Q}<\mathbf{K}_{\text {sp }} & \text { unsaturated } \\
\mathbf{Q}>\mathbf{K}_{\text {sp }} & \begin{array}{l}
\text { supersaturated } \\
\text { (ppt occurs) }
\end{array}
\end{array}
$$

Reaction Quotient(Q) cont...:

Ex:

If AgNO_{3} and KI are mixed to obtain a solution with $\left[\mathrm{Ag}^{+}(\mathrm{aq})\right]=0.010 \mathrm{M}$ and $[I-(\mathrm{aq})]=0.015 \mathrm{M}$, is the solution unsaturated, saturated, or supersaturated?
$\mathrm{K}_{\text {sp }}(\mathrm{AgI})=\mathbf{8 . 5} \times 10^{-17}$

