Acids and Bases:

- **Bronsted/Lowry Theory**
- <u>acid</u>- Proton donor.
- **<u>base</u>- Proton acceptor.**
- The strength of an acid or base depends on their ability to donate or accept protons.

Where H₃O⁺ same as H⁺(aq).

Strong Acids:

- **Ex: Strong Acid**
- HCl dissociates completely.
- Also written as:
- $HCl(aq) \rightarrow H^+(aq) + Cl^-(aq)$

HC₂H₃O₂ dissociates slightly.

Also written as:

 $\mathbf{HC}_{2}\mathbf{H}_{3}\mathbf{O}_{2}(\mathbf{aq}) \Leftarrow \mathbf{H}^{+}(\mathbf{aq}) + \mathbf{C}_{2}\mathbf{H}_{3}\mathbf{O}_{2}^{-}(\mathbf{aq})$

Strong Base:

Typical Strong Base is NaOH. $NaOH(s) \xrightarrow{H_2O} Na^+(aq) + OH^-(aq)$

Hydroxide Ion: OH⁻(aq)

$OH^{-}(aq) + H^{+}(aq) \rightarrow H_2O(l)$

Weak Base:

$\begin{array}{rcrcrcr} NH_3 &+ & H_2O(l) & \Leftarrow & NH_4^+ &+ & OH^- \\ base & acid & acid & base \end{array}$

$K = [H^{+}(aq)][OH^{-}(aq)]$

or

$\mathbf{K} = [\mathbf{H}_{3}\mathbf{O}^{+}(\mathbf{aq})][\mathbf{OH}^{-}(\mathbf{aq})]$

$H_2O(l) \Leftrightarrow H^+(aq) + OH^-(aq)$

or

<u>The Self Ionization of Water:</u> $2H_2O(l) \Rightarrow H_3O^+(aq) + OH^-(aq)$

K_w: Ion product of water:

At 25 °C $[H^+(aq)] = [OH^-(aq)] = 1.0 \times 10^{-7} M$ thus

$K_w = [H^+(aq)][OH^-(aq)] = 1.0 \times 10^{-14}$ $H_2O(l) \iff H^+(aq) + OH^-(aq)$ If [H^+(aq)] increases, [OH^-(aq)] decreases.

Importance of H⁺ Concentration:

Knowing the concentration of H⁺ very important.

Ex: aquarium, pools, etc.

Fishtank

Aquarium in Toilet

Pool

pH is a logarithmic scale of H⁺ concentration. pH = -Log[H⁺(aq)] or pH = -Log[H₃O⁺(aq)]

The pH scale ranges from 0(very acidic) to 14(very basic). Pure water has a pH of 7.

Likewise, pOH = -Log[OH⁻(aq)]

pH + pOH = 14

Examples:

- **Ex: Calculate the pH of a 0.025 M HCl solution.**
- Ex2: Calculate the [H⁺(aq)], [OH⁻(aq)], and pOH of rainwater with a pH of 4.35.
- Ex3: At 25 °C a 0.100 M solution of acetic acid is 1.34% ionized. Calculate the pH.

Acid Ionization Constant(K_a):

For a weak acid HA. HA(aq) \Rightarrow H⁺(aq) + A⁻(aq) $K_A = \frac{[H(aq)^+][A^-(aq)]}{[HA(aq)]}$

 $\mathbf{K}_{\mathbf{A}}$ values indicate relative acid strength.

Ex: Calculate the K_A of 0.1 M acetic acid. Acetic acid is 1.34% ionized.

Examples:

Ex: What is the pH of a 0.00250 M HNO₂ solution?

 $K_A = 7.20 \times 10^{-4}$

Diprotic and Polyprotic Acids:

Acids with two or more ionizable protons.

Example of a Diprotic Acid

 $H_2CO_3(aq) \Rightarrow H^+(aq) + HCO_3(aq)$ $K_{A1} = \frac{[H(aq)^{+}][HCO_{3}(aq)]}{[H_{2}CO_{3}(aq)]}$ $HCO_3^{-}(aq) \Leftrightarrow H^+(aq) + CO_3^{2-}(aq)$ $K_{A2} = \frac{[H(aq)^{+}][CO_{3}^{2-}(aq)]}{[HCO_{3}^{-}(aq)]}$

Example of Triprotic Acid: Phosphoric acid: H₃PO₄

Ex:

- Calculate $[H^+(aq)]$, $[H_2PO_4^-(aq)]$, $[HPO_4^{2-}(aq)]$, and $[PO_4^{3-}(aq)]$ for a 3.0 M H_3PO_4 solution.
- $K_{A1} = 7.1 \times 10^{-3}, K_{A2} = 6.3 \times 10^{-8}, K_{A3} = 4.2 \times 10^{-13}$

Base Dissociation Constant(K_B):

For a weak base.

 $NH_{3}(aq) + H_{2}O(l) \Rightarrow NH_{4}^{+}(aq) + OH^{-}(aq)$ $K_{B} = \frac{[NH_{4}^{+}(aq)][OH^{-}(aq)]}{[NH_{3}(aq)]}$

Relationship between K_A and K_B.

 $K_A \cdot K_B = K_W = 1 \times 10^{-14}$

Hydrolysis:

- Hydrolysis is the reaction between an ion and water.
- Adding NaCl to water.
- Na⁺ + H₂O(l) \rightarrow no reaction
- $Cl^- + H_2O(l) \rightarrow no reaction$
- Adding NH_4Cl . $NH_4^+ + H_2O(l) \Rightarrow NH_3 + H_3O^+$
- Salts of weak acids and bases affect pH. If ion has K_A or K_B, hydrolysis occurs.

Lewis Acids and Bases:

- Lewis acid-base theory relates acid-base behavior of molecules to their molecular structure.
- Lewis acid- A species that is an electron pair acceptor.
- Lewis base- A species that is an electron pair donor.