Acids and Bases:

Bronsted/Lowry Theory

acid- Proton donor.

base- Proton acceptor.

The strength of an acid or base depends on their ability to donate or accept protons.

Where $\mathrm{H}_{3} \mathrm{O}^{+}$same as $\mathrm{H}^{+}(\mathbf{a q})$.

Strong Acids:

Ex: Strong Acid

$$
\begin{aligned}
& \mathrm{HCl} \\
& \text { acid1 }
\end{aligned} \underset{\text { base2 }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})} \rightarrow \underset{\text { acid2 }}{\mathrm{H}_{3} \mathrm{O}^{+}}+\underset{\text { base1 }}{\mathrm{Cl}^{-}}
$$

HCl dissociates completely.
Also written as:
$\mathrm{HCl}(\mathbf{a q}) \rightarrow \mathrm{H}^{+}(\mathbf{a q})+\mathrm{Cl}^{-}(\mathbf{a q})$

Weak Acids:

$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$ acid1 base1 acid2 base2

$\mathrm{HC}_{2} \mathbf{H}_{3} \mathrm{O}_{2}$ dissociates slightly.

Also written as:
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq}) \leftrightharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})$

Strong Base:

Typical Strong Base is $\mathbf{N a O H}$. $\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathbf{a q})+\mathrm{OH}^{-}(\mathbf{a q})$ Hydroxide Ion: $\mathrm{OH}^{-}(\mathrm{aq})$

$\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathbf{O}(\mathrm{l})$

Weak Base:

$\underset{\text { base }}{\mathrm{NH}_{3}}+\underset{\text { acid }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{I})} \leftrightharpoons \underset{\text { acid }}{\mathrm{NH}_{4}^{+}}+\underset{\text { base }}{\mathrm{OH}^{-}}$

The Self Ionization of Water:

$\mathbf{2 H} \mathbf{2} \mathbf{O}(\mathbf{l}) \leftrightharpoons \mathbf{H}_{3} \mathbf{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
 or
 $\mathrm{H}_{2} \mathrm{O}(\mathbf{l}) \leftrightharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$\mathrm{K}=\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right][\mathrm{OH} \cdot(\mathrm{aq})]$
or
$\mathbf{K}=\left[\mathrm{H}^{+}(\mathbf{a q})\right]\left[\mathrm{OH}^{-}(\mathbf{a q})\right]$

$\underline{K}_{\mathrm{w}}$: Ion product of water:

At $25^{\circ} \mathrm{C}\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=1.0 \times 10^{-7} \mathrm{M}$ thus

$$
\begin{gathered}
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=1.0 \times 10^{-14} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{gathered}
$$

Importance of H^{+}Concentration:

Knowing the concentration of \mathbf{H}^{+}very

 important.Ex: aquarium, pools, etc.

Fishtank

Aquarium in Toilet

Pool

pH Scale:

pH is a logarithmic scale of \mathbf{H}^{+}concentration.

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right] \text { or } \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]
$$

The pH scale ranges from 0 (very acidic) to 14(very basic). Pure water has a pH of 7.

Likewise,

 $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}(\mathrm{aq})\right]$$$
\mathrm{pH}+\mathrm{pOH}=14
$$

Examples:

Ex: Calculate the pH of a 0.025 MHCl solution.

Ex2: Calculate the $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$, $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$, and pOH of rainwater with a $\mathbf{~ p H}$ of 4.35 .

Ex3: At $25^{\circ} \mathrm{C}$ a 0.100 M solution of acetic acid is 1.34% ionized. Calculate the $\mathbf{p H}$.

Acid Ionization Constant $\left(K_{\mathrm{a}}\right):$

For a weak acid HA.
$\mathbf{H A}(\mathbf{a q}) \quad \leftrightharpoons \mathbf{H}^{+}(\mathbf{a q})+\mathbf{A}^{-}(\mathbf{a q})$

$$
\mathrm{K}_{\mathrm{A}}=\frac{\left[\mathrm{H}(\mathrm{aq})^{+}\right]\left[\mathrm{A}^{-}(\mathrm{aq})\right]}{[\mathrm{HA}(\mathrm{aq})]}
$$

K_{A} values indicate relative acid strength.
Ex: Calculate the K_{A} of 0.1 M acetic acid. Acetic acid is $\mathbf{1 . 3 4 \%}$ ionized.

Examples:

Ex: What is the pH of a $0.00250 \mathrm{M} \mathrm{HNO}_{2}$

 solution?$$
K_{A}=7.20 \times 10^{-4}
$$

Diprotic and Polyprotic Acids:

Acids with two or more ionizable protons.
Example of a Diprotic Acid
$\mathbf{H}_{2} \mathbf{C O}_{3}(\mathrm{aq}) \leftrightharpoons \mathbf{H}^{+}(\mathrm{aq}) \quad+\quad \mathrm{HCO}_{3}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{Al}}=\frac{\left[\mathrm{H}(\mathrm{aq})^{+}\right]\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})\right]}$
$\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \leftrightharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3^{2-}}{ }^{-(\mathrm{aq})}$

$$
\mathrm{K}_{\mathrm{A} 2}=\frac{\left[\mathrm{H}(\mathrm{aq})^{+}\right]\left[\mathrm{CO}_{3}^{2-}(\mathrm{aq})\right]}{\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]}
$$

Example of Triprotic Acid: Phosphoric acid: $\mathbf{H}_{\mathbf{3}} \mathbf{P O}_{\mathbf{4}}$

Ex:
Calculate $\left[\mathrm{H}^{+}(\mathrm{aq})\right],\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})\right]$,
$\left[\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})\right]$, and $\left[\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})\right]$ for a 3.0 M $\mathrm{H}_{3} \mathrm{PO}_{4}$ solution.
$\mathrm{K}_{\mathrm{A} 1}=7.1 \times 10^{-3}, \mathrm{~K}_{\mathrm{A} 2}=6.3 \times 10^{-8}, \mathrm{~K}_{\mathrm{A} 3}=4.2 \times 10^{-13}$

Base Dissociation Constant $\left(\mathbf{K}_{\mathrm{B}}\right)$:

For a weak base.

$$
\begin{gathered}
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
\mathrm{K}_{\mathrm{B}}=\frac{\left[\mathrm{NH}_{4}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}{\left[\mathrm{NH}_{3}(\mathrm{aq})\right]}
\end{gathered}
$$

Relationship between K_{A} and K_{B}.

$$
K_{A} \cdot K_{B}=K_{W}=1 \times 10^{-14}
$$

Hydrolysis:

Hydrolysis is the reaction between an ion and

 water.Adding NaCl to water.
$\mathbf{N a}^{+}+\mathbf{H}_{2} \mathrm{O}(\mathrm{l}) \quad \rightarrow \quad$ no reaction
$\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow$ no reaction
Adding $\mathrm{NH}_{4} \mathrm{Cl}$.
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
Salts of weak acids and bases affect $\mathbf{p H}$.
If ion has K_{A} or K_{B}, hydrolysis occurs.

Lewis Acids and Bases:

Lewis acid-base theory relates acid-base behavior of molecules to their molecular structure.

Lewis acid- A species that is an electron pair acceptor.

Lewis base- A species that is an electron pair donor.

