CHEM 1105 TEST#2

<u>NAME:</u> Date: July 6, 2016

Student Number:

Useful Data!

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$T(K) = T(^{\circ}C) + 273.15$$

$$\Delta G = \Delta H - T\Delta S$$

$$1000 J = 1kJ$$

1. Consider the following process.

$$\begin{array}{ccc} Br_2(l) & \rightarrow & Br_2(g) \\ \Delta H^\circ = 31.0 \text{ kJ}, & \Delta S^\circ = 93.0 \text{ J/K} \end{array}$$

Assuming ΔH° and ΔS° do not change in this temperature range.

- a) Is this process spontaneous at 30. °C.
- b) What is the normal boiling point of liquid Br_2 when the reaction starts to becomes spontaneous?

2. Consider the reaction

$$2SO_2(g) \hspace{1cm} + \hspace{1cm} O_2(g) \hspace{1cm} \rightarrow \hspace{1cm} 2SO_3(g)$$

carried out at 25 °C.

Substance	ΔH _f °(kJ/mole)	ΔS°(J/K·mole)
$SO_2(g)$	-297	248
SO ₃ (g)	-396	257
$O_2(g)$	0	205

- a) Calculate ΔH° , ΔS° , and ΔG° .
- b) Discuss the significance of each.
- c) Determine if this reaction is spontaneous at high temperatures, low temperatures, all temperatures, or no temperatures. Justify.

Answer Set for CHEM 1105 TEST#2

- 1.a) $\Delta G^{\circ} = +2.8$ kJ thus the process is not spontaneous. b) Normal boiling point = 333 K
- 2.a) b) $\Delta H^\circ =$ -198 kJ, exothermic; $\Delta S^\circ =$ -187 J/K, disorder decreased; $\Delta G^\circ =$ -142 kJ, spontaneous
- c) Spontaneous at low temperatures. Since ΔH° is negative and ΔS° is negative, ΔG° will only be negative when ΔH° is dominate or -T ΔS° is small. Thus spontaneous at low temperatures.