# CAPE BRETON UNIVERSITY 

Chem 1105-Final Exam<br>Date: August 10, 2016

Instructor: Calvin Howley<br>Time Period: 3 hour

Student:
Student \#: $\qquad$

## Instructions:

Please turn off all cell phones. Only scientific calculators are allowed in the exam room. Students found to be using any electronic organizer or other electronic device during the exam will be given a grade of zero and asked to leave the testing area.

All answers are to be done on test paper. If more room is needed use the back side of the paper and indicate.

Read all questions carefully.
Answer all questions for full point value. Partial marks may be awarded for incomplete questions.

Make sure you have all data sheets and test pages.
Complete as many questions as soon as possible and then go back to incomplete questions.

Test papers not turned in to the instructor at the end of the test period will not be accepted.

## Part I: Short Answer

## Instructions: Circle the correct answer in the space provided.

1. Nitric oxide reacts with oxygen to form nitrogen dioxide:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

What is $\mathrm{K}_{\mathrm{c}}{ }^{\prime}$ for the reverse reaction if the equilibrium concentration of NO is $0.300 \mathrm{M}, \mathrm{O}_{2}$ is 0.200 M and $\mathrm{NO}_{2}$ is 0.530 M ?
a) 0.0340
b) 0.0641
c) 0.624
d) 15.6
2. If $\mathrm{K}_{\mathrm{c}}=2.0 \times 10^{33}$ at $25^{\circ} \mathrm{C}$, for the following reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{HCl}(\mathrm{g})$, then find $\mathrm{K}_{\mathrm{p}}$ at the same temperature.
a) $8.2 \times 10^{31}$
b) $9.7 \times 10^{32}$
c) $2.0 \times 10^{33}$
d) $4.9 \times 10^{34}$
3. Which equilibrium below is homogeneous?
a) $\mathrm{BaSO}_{4}(\mathrm{~s}) \leftrightharpoons \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
b) $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \leftrightharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
c) $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \leftrightharpoons \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
d) $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})$
4. An Arrhenius acid is defined as
a) hydroxide donor.
b) substance that dissociates in water to produce aqueous hydrogen ions.
c) proton acceptor.
d) substance that dissociates in water to produce aqueous hydroxide ions.
5. Indicate all the Brønsted-Lowry bases in the following chemical reaction.

$$
\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

a) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$
c) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{OH}^{-}$
d) $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}$
6. A solution with a hydroxide ion $\left(\mathrm{OH}^{-}\right)$concentration of $4.15 \times 10^{-4} \mathrm{M}$ is $\qquad$ and has a hydrogen ion $\left(\mathrm{H}^{+}\right)$concentration of $\qquad$ -.
a) acidic, $2.41 \times 10^{-10} \mathrm{M}$
b) acidic, $2.41 \times 10^{-11} \mathrm{M}$
c) basic, $2.41 \times 10^{-10} \mathrm{M}$
d) basic, $2.41 \times 10^{-11} \mathrm{M}$
7. For the galvanic cell $\operatorname{Pt}(\mathrm{s})\left|\mathrm{Sn}^{2+}(\mathrm{aq}), \mathrm{Sn}^{4+}(\mathrm{aq})\right|\left|\mathrm{Pb}^{2+}(\mathrm{aq})\right| \mathrm{Pb}(\mathrm{s})$, what is the function of the $\mathrm{Pt}(\mathrm{s})$ ?
a) Pt is the anode and is a reactant in the overall cell reaction.
b) Pt is the anode and does not appear in the overall cell reaction.
c) Pt is the cathode and is a product in the overall cell reaction.
d) Pt is the cathode and does not appear in the overall cell reaction.
8. Doubling all the coefficients in the equation for the cell reaction
a) doubles both $\mathrm{E}_{\text {cell }}{ }^{\circ}$ and $\Delta \mathrm{G}^{\circ}$.
b) doubles $\mathrm{E}_{\text {cell }}{ }^{\circ}$, but does not change $\Delta \mathrm{G}^{\circ}$.
c) doubles $\Delta \mathrm{G}^{\circ}$, but does not change $\mathrm{E}_{\text {cell }}{ }^{\circ}$.
d) does not change $\mathrm{E}_{\text {cell }}{ }^{\circ}$ and $\Delta \mathrm{G}^{\circ}$.
9. Based on the following information,

$$
\begin{array}{ll}
\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-}(\mathrm{aq}) & \mathrm{E}^{\circ}=+2.87 \mathrm{~V} \\
\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{~s}) & \mathrm{E}^{\circ}=-2.36 \mathrm{~V}
\end{array}
$$

which of the following chemical species is the strongest reducing agent?
a) $\mathrm{F}_{2}(\mathrm{~g})$
b) $\mathrm{Mg}^{2+}(\mathrm{aq})$
c) $\mathrm{F}^{-}(\mathrm{aq})$
d) $\operatorname{Mg}(\mathrm{s})$

Part II: Long Answer
Instructions: Fill your answer in the space provided. Show all work for full point value.
A. Equilibrium

1. Consider the reaction:

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=2.4 \times 10^{-4} \text { at } 1073 \mathrm{~K}
$$

A reaction mixture contains 0.112 atm of $\mathrm{H}_{2}, 0.055 \mathrm{~atm}$ of $\mathrm{S}_{2}$, and 0.445 atm of $\mathrm{H}_{2} \mathrm{~S}$. Is the reaction mixture at equilibrium? If not, in what direction will the reaction proceed?
2. Consider the reaction:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=102 \text { at } 500 \mathrm{~K}
$$

If a reaction mixture initially contains 0.135 M CO and $0.135 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$, what will be the equilibrium concentration of each of the reactants and products?
3. Consider the reaction:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

A reaction mixture in a 5.19 L flask at $30 .{ }^{\circ} \mathrm{C}$ initially contains 2.34 g of $\mathrm{H}_{2}$ and 26.9 g CO . At equilibrium, the flask contains 8.65 g of $\mathrm{CH}_{3} \mathrm{OH}$. Calculate the equilibrium constants $\mathrm{K}_{\mathrm{c}}$ and $\mathrm{K}_{\mathrm{p}}$ for the reaction at this temperature.

## B. Acid-Base, Buffer, Ksp

4. A 25.0 mL sample of 0.125 M pyridine, a weak base, is titrated with 0.100 M HCl . Calculate the pH at each volume of added acid: $0 \mathrm{~mL}, 20.00 \mathrm{~mL}$ and 40.00 mL .
5. A 100.0 mL buffer solution is 0.175 M in HOCl and 0.150 M in NaOCl .
a) What is the initial pH of this solution?
b) What is the pH after addition of 0.150 g of HBr to the original buffer solution?
c) What is the pH after addition of 0.0850 g of NaOH to the original buffer solution?
6. Calculate the molar solubility of a solution of magnesium hydroxide in pure water?

How does this compare to the solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ in a solution buffered at $\mathrm{pH}=10.00$ ?
$\mathrm{K}_{\text {sp }}\left(\mathrm{Mg}(\mathrm{OH})_{2}\right)=2.06 \times 10^{-13}$

## C. Electrochemistry

7. Balance the following redox reactions
a) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad$ (acidic)
b) $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{BrO}_{3}^{-}(\mathrm{aq}) \quad$ (basic)
8.a) Calculate $\mathrm{E}_{\text {cell }}{ }^{\circ}$ for the following redox reaction:

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Ni}(\mathrm{~s}) \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Ni}^{2+}(\mathrm{aq})
$$

And state whether or not the reaction is spontaneous or non-spontaneous.
b) The cell potential of the electrochemical cell depends on the gold concentration in the cathode half-cell:

$$
\operatorname{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(1 \mathrm{~atm})\right| \mathrm{H}^{+}(0.100 \mathrm{M})| | \mathrm{Au}^{+}(? \mathrm{M}) \mid \mathrm{Au}(\mathrm{~s})
$$

What is the concentration of $\mathrm{Au}^{+}$in the cell if $\mathrm{E}_{\text {cell }}$ is 1.60 V ?
9. A current of 11.3 A is applied to 1.25 L of a solution of 0.552 M HCl converting some of the $\mathrm{H}^{+}$ions into $\mathrm{H}_{2}(\mathrm{~g})$ which bubbles out of solution. What is the pH of the original solution? What is the pH of the solution after 73 minutes?

## Grade Sheet

The points awarded for this exam are outlined below. Please review. If there are any questions or possible corrections please consult the instructor.

| Question | Points Awarded |
| :---: | :---: |
| Part I |  |
| $1-9$ |  |
| Part II |  |
| $1-3$ | A |
|  |  |
| $4-6$ | B |
| $7-9$ |  |
| Total |  |

Comments:

## Some Useful Data or Not!

## Constants:

| 1 mole $=6.022 \times 10^{23}$ elementary particles | $\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mole}$ |
| :---: | :---: |
| $\mathrm{N}_{\mathrm{a}}=6.0223 \times 10^{23}$ | $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mole}$ |
| $1000 \mathrm{~g}=1 \mathrm{~kg}$ | $\mathrm{R}=8.314 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \cdot \mathrm{~K} \cdot \mathrm{~mole}$ |
| $1 \mathrm{~g}=1000 \mathrm{mg}=0.001 \mathrm{~kg}$ | $1 \mathrm{~kJ}=1000 \mathrm{~J}$ |
| $1 \mathrm{lb}=453.6 \mathrm{~g}$ | $1 \mathrm{cal}=4.184 \mathrm{~J}$ |
| $1 \mathrm{pg}=1 \times 10^{-12} \mathrm{~g}$ | $1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760 \mathrm{torr}$ |
| $1 \mu \mathrm{~g}=1 \times 10^{-6} \mathrm{~g}$ | $1 \mathrm{~atm}=101.325 \mathrm{kPa}$ |
| $1 \mathrm{~km}=1000 \mathrm{~m}$ | $\mathrm{KW}=1.0 \times 10^{-14}$ |
| $1 \mathrm{~cm}=0.01 \mathrm{~m}$ | $1 \mathrm{~F}=96,500 \mathrm{C}$ |
| $1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}$ | $1 \mathrm{~F}=1 \mathrm{~mole}$ of electrons |
| $1 \mathrm{pm}=1 \times 10^{-12} \mathrm{~m}$ | $1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}$ |
| $1 \mu \mathrm{~m}=1 \times 10^{-6} \mathrm{~m}$ | $1 \mathrm{~J}=1 \mathrm{C} \cdot \mathrm{V}$ |
| $1 \mathrm{~L}=1000 \mathrm{~mL}$ |  |

## Equations:

$$
\mathbf{T}^{\circ} \mathrm{C}=\left(5^{\circ} \mathrm{C} / 9^{\circ} \mathbf{F}\right) \times\left(\mathbf{T}^{\circ} \mathbf{F}-32^{\circ} \mathbf{F}\right) \quad \mathbf{T}(\mathbf{K})=\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)+273.15^{\circ} \mathrm{C}
$$

$$
\mathbf{M}_{1} \mathbf{V}_{1}=\mathbf{M}_{2} \mathbf{V}_{2} \quad \mathbf{K}_{\mathrm{p}}=\mathbf{K}_{\mathbf{c}}(\mathbf{R T})^{\Delta \mathrm{n}} \quad \mathbf{K}_{\mathrm{a}} \cdot \mathbf{K}_{\mathrm{b}}=\mathbf{K}_{\mathrm{w}}
$$

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{OH}^{-}\right]=\mathbf{1 0}^{-\mathrm{pOH}} \quad \mathbf{p H}=-\log \left[\mathbf{H}^{+}(\mathbf{a q})\right]
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \quad \mathrm{pOH}+\mathrm{pH}=14
$$

$$
\mathbf{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathbf{a q})\right]\left[\mathrm{OH}^{-}(\mathbf{a q})\right] \quad \mathbf{p K}=-\log K_{a} \quad \mathbf{p K} \mathrm{HIn}=-\operatorname{LogK}_{\mathrm{HIn}}
$$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]} \quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\text { moles of base }}{\text { moles of acid }} \quad \mathbf{w}=\mathbf{n} \mathbf{F} \boldsymbol{E}_{\text {cell }}
$$

$$
\mathbf{p H}=\mathbf{p K} \mathbf{H I n}^{+\log \frac{\left[\mathbf{I n}^{-}\right]}{[\mathbf{H I n}]}} \quad \Delta G=\Delta \mathrm{G}^{\circ}+\text { RTInQ } \quad \Delta \mathrm{G}^{\circ}=-\mathrm{nFE}^{\circ} \text { cell }
$$

$$
\text { For } \begin{aligned}
\mathbf{0} & =\mathbf{a x}^{2}+\mathbf{b x}+\mathbf{c} \\
X & \equiv \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned} \quad \mathrm{E}=\mathrm{E}^{\mathrm{o}}-\frac{0.0592 \mathrm{~V}}{\mathrm{n}} \log \mathrm{Q}
$$

## Answer Set For Chem 1105-Final Exam:

## Part I

1.b)
2.c)
3.d)
4.b)
5.c)
6.d)
7. b)
8.c)
9.d)

## Part II

1. $\mathrm{Q}=0.0035$. $\mathrm{Q}>\mathrm{K}_{\mathrm{p}}$ equilibrium shifts to the left or reactants.
2. $[\mathrm{CO}]=\left[\mathrm{H}_{2} \mathrm{O}\right]=0.012 \mathrm{M},\left[\mathrm{CO}_{2}\right]=\left[\mathrm{H}_{2}\right]=0.123 \mathrm{M}$
3. $\mathrm{K}_{\mathrm{c}}=27.6, \mathrm{~K}_{\mathrm{p}}=0.0446$
4. $9.14,4.93,1.87$
5.a) 7.33 ; b) 7.23 ; c) 7.45
5. In water $3.72 \times 10^{-5} \mathrm{M}$; for $\mathrm{pH}=10.00,2.06 \times 10^{-5} \mathrm{M}$
7.a) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+4 \mathrm{Cl}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+8 \mathrm{Cl}^{-}(\mathrm{aq})+10 \mathrm{H}^{+}(\mathrm{aq})$
b) $2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{MnO}_{2}(\mathrm{~s})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
8.a) 1.049 V , spontaneous; b) 0.00302 M
6. $0.26,0.84$
