Chem 1105-2015 Summer Problem Set #7

- 1. For each of the following unbalanced redox equations balance the overall equation.
- a) $C_6H_5OH(aq) + SO_3(g) \rightarrow CO_2(g) + SO_2(g)$

(acidic)

- b) SO_3^{2} -(aq) + MnO_4 -(aq) \rightarrow
- SO_4^{2} -(aq) + MnO₂(s)

(basic)

- c) $CrO_2^-(aq) + ClO^-(aq)$
- $Cl^{-}(aq) + CrO_4^{2-}(aq)$
- (basic)
- 2. In question #1 assign oxidation numbers and identify the substance oxidized, reduced, the oxidizing agent, and reducing agent.
- 3. Make a schematic drawing of the cell shown by the cell diagram. Label all parts of the cell, indicate ion and electron flow, write a balanced half reaction equation for the reactions that takes place at each electrode, and write the reaction equation for the overall reaction.

$$Ni(s) |Ni^{2+}(aq)| |Cu^{2+}(aq), Cu^{+}(aq)| Pt(s)$$

- 4. A voltaic cell containing standard Co²⁺/Co and Au³⁺/Au half cells is constructed and the following experimental observations are observed.
- 1. Metallic gold plates out on one electrode, and the gold ion concentration decreases around that electrode.
- 2. The mass of the cobalt electrode decreases, and the cobalt(II) ion concentration increases around that electrode.
- a) Without consulting a table of standard reduction potentials, write the line notation for this electrochemical cell.
- b) Diagram and completely describe the cell from the experimental observations.
- 5. Calculate E°_{cell} for each of the following electrochemical cells at 25 °C.
- a) $Ag(s) |Ag^{+}(aq)| |Ce^{4+}(aq), Ce^{3+}(aq)| Pt(s)$
- b) $O_2(g) + 4H^+(aq) + 4\Gamma(aq) \rightarrow 2I_2(s) + 2H_2O(1)$
- c) $5Hg_2^{2+}(aq) + 2MnO_4(aq) + 16H(aq) \rightarrow 10Hg^{2+}(aq) + 2Mn^{2+}(aq) + 8H_2O(1)$
- 6. Use a table of standard reduction potentials to arrange the following species in order of decreasing strength as oxidizing agents: Fe^{3+} , $Br_2(l)$, Cu^{2+}
- 7. Calculate E_{cell} for each of the following electrochemical cells at 25 °C.
- a) $Ga(s) |Ga^{3+}(0.0050 M)| |H^{+}(aq)(0.0100 M)| H_{2}(g)(1 atm)| Pt(s)$
- b) Ni(s) $|Ni^{2+}(aq)(0.250 \text{ M})| |Cu^{2+}(aq)(0.500 \text{ M}), Cu^{+}(aq)(0.750 \text{ M})| Pt(s)$
- c) $Cl_2(g)(1.00 \text{ atm}) + 2Br(aq)(0.100 \text{ M}) \rightarrow Br_2(l) + 2Cl(aq)(0.50 \text{ M})$
- d) $3AgCl(s) + Al(s) \rightarrow 3Ag(s) + 3Cl(aq)(0.100 M) + Al^{3+}(aq)(0.125 M)$
- 8. Calculate the concentration of H⁺(aq) and the pH for the following electrochemical cell.

Ga(s)
$$|Ga^{3+}(0.100 \text{ M})| |H^{+}(aq)(?)|H_{2}(g)(1 \text{ atm})|Pt(s)$$
 $E_{cell} = 0.467 \text{ V}$

9.a) How many grams of Zn can be deposited on a steel gate if a current of 15.0 A is passed through a ZnSO₄ solution for 1.00 day? b) How many seconds does it take to deposit 85.5 g Zn on a steel gate when a current of 23.0 A is passed through a ZnSO₄ solution?

Answer Set for Chem 1105-2015 Summer Problem Set #7

- 2.a) substance reduced/oxidizing agent: SO₃; substance oxidized/reducing agent: C₆H₅OH
- b) substance reduced/oxidizing agent: MnO₄; substance oxidized/reducing agent: SO₃²
- c) substance reduced/oxidizing agent: ClO⁻; substance oxidized/reducing agent: CrO₂⁻

3.

anode: Ni(s)
$$\rightarrow$$
 Ni²⁺(aq) + 2e⁻
cathode: Cu²⁺(aq) + e⁻ \rightarrow Cu⁺(aq)
overall: Ni(s) + 2Cu²⁺(aq) \rightarrow Ni²⁺(aq) + 2Cu⁺(aq)

4.a) $Co(s) | Co^{2+}(aq) | | Au^{3+}(aq) | Au(s)$

5.a) 0.81 V, b) 0.6943 V, c) 0.6036 V

6. Strongest Oxiding Agent: $Br_2(l) > Fe^{3+}(aq) > Cu^{2+}(aq)$: Weakest Oxidizing Agent

7.a) 0.487 V, b) 0.4181 V, c) 0.2412 V, d) 1.9750 V

$$8.[H^{+}(aq)] = 0.0125 M, pH = 1.90$$