Chem 1105-2016 Summer Problem Set #3

1. Consider the reaction:

 $2A + B \rightarrow 3C$

If the rate of consumption of A is 3.06×10^{-3} M/s, determine the rate of consumption of B and the rate of formation of C.

2. For a reaction in which A and B form C, the following data were obtained from three experiments:

Experiment	[A](Molarity)	[B](Molarity)	Rate of Formation of C(M/s)
1	0.300	0.150	1.60×10^{-5}
2	0.600	0.300	2.59×10 ⁻⁴
3	0.300	0.300	1.28×10^{-4}

a) What is the rate expression for the reaction and the overall reaction order?

b) What is the numerical value of the rate constant, k?

3. The reaction

$$C_2H_5Cl(g) \rightarrow C_2H_4(g) + HCl(g)$$

is first order in C_2H_5Cl . The rate constant is 1.60×10^{-6} s⁻¹ for the reaction conducted at 650. K. In an investigation into the decomposition of $C_2H_5Cl(g)$, an initial concentration of 0.165 M was used. a) What will be the concentration of $C_2H_5Cl(g)$ after 125 hours? b) How long will it take for the concentration of C_2H_5Cl to drop to 0.100 M? c) How many hours will it take for 75.0% of the C_2H_5Cl to decompose? d) Determine the half-life, in hours, for this reaction at 650. K.

4. The decomposition of NO₂(g):

$$2NO_2(g) \rightarrow 2NO(g) + O_2(g)$$

is a second order reaction, and the rate constant is $0.755 \text{ M}^{-1} \cdot \text{s}^{-1}$ for the reaction conducted at 603 K. In an experiment at 603 K, the initial concentration of NO₂(g) was 0.00650 M. a) What is the concentration of NO₂(g) after 125 s have elapsed? b) How many seconds will it take for the concentration of NO₂(g) to drop to 0.00100 M? c) Determine the half-life.

5. The reaction:

$C_2H_4(g) \ + \ H_2(g) \ \rightarrow \ C_2H_6(g)$

is first order in C₂H₄, first order in H₂, and second order overall. The energy of activation for the reaction is 181 kJ/mol and k is 1.3×10^{-3} M⁻¹·s⁻¹ for the reaction at 700. K. What is the value of k for the reaction at 730. K.

6. A mechanism for the gas-phase reaction between iodine and hydrogen is as follows:

Step 1: $I_2 \rightleftharpoons 2I$ (fast, equilibrium) Step 2: $H_2 + I \rightleftharpoons H_2I$ (fast, equilibrium) Step 3: $H_2I + I \rightarrow 2HI$ (slow)

a) Write the overall reaction. b) Identify the reaction intermediate?

Answer Set for Chem 1105-2016 Summer Problem Set #3

1.
$$-\Delta[B]/\Delta t = 1.53 \times 10^{-3} \text{ M/s}; \Delta[C]/\Delta t = 4.59 \times 10^{-3} \text{ M/s}$$

2.a) rate = k[A][B]³, 4th order overall; b) k = 0.0159 M⁻³·s⁻¹

- 3.a) 0.0803 M; b) 87.0 hours; c) 241 hours; d) $t_{1/2} = 120$. hours
- 4.a) 0.00403 M; b) 1.12×10³ s; c) 204 s

5. $k = 4.7 \times 10^{-3} M^{-1} \cdot s^{-1}$

6.a) $H_2 + I_2 \rightarrow 2HI; b) I, H_2I$