Chem 1105-2016 Summer Problem Set \#3

1. Consider the reaction:

$$
2 \mathrm{~A}+\mathrm{B} \rightarrow 3 \mathrm{C}
$$

If the rate of consumption of A is $3.06 \times 10^{-3} \mathrm{M} / \mathrm{s}$, determine the rate of consumption of B and the rate of formation of C .
2. For a reaction in which A and B form C, the following data were obtained from three experiments:

Experiment	$[\mathrm{A}]$ (Molarity)	$[\mathrm{B}]$ (Molarity)	Rate of Formation of C(M/s)
1	0.300	0.150	1.60×10^{-5}
2	0.600	0.300	2.59×10^{-4}
3	0.300	0.300	1.28×10^{-4}

a) What is the rate expression for the reaction and the overall reaction order?
b) What is the numerical value of the rate constant, k ?
3. The reaction

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

is first order in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$. The rate constant is $1.60 \times 10^{-6} \mathrm{~s}^{-1}$ for the reaction conducted at 650 . K . In an investigation into the decomposition of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{g})$, an initial concentration of 0.165 M was used. a) What will be the concentration of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{g})$ after 125 hours? b) How long will it take for the concentration of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ to drop to 0.100 M ? c) How many hours will it take for 75.0% of the $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ to decompose? d) Determine the half-life, in hours, for this reaction at $650 . \mathrm{K}$.
4. The decomposition of $\mathrm{NO}_{2}(\mathrm{~g})$:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

is a second order reaction, and the rate constant is $0.755 \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$ for the reaction conducted at 603 K . In an experiment at 603 K , the initial concentration of $\mathrm{NO}_{2}(\mathrm{~g})$ was 0.00650 M . a) What is the concentration of $\mathrm{NO}_{2}(\mathrm{~g})$ after 125 s have elapsed? b) How many seconds will it take for the concentration of $\mathrm{NO}_{2}(\mathrm{~g})$ to drop to 0.00100 M ? c) Determine the half-life.
5. The reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})
$$

is first order in $\mathrm{C}_{2} \mathrm{H}_{4}$, first order in H_{2}, and second order overall. The energy of activation for the reaction is $181 \mathrm{~kJ} / \mathrm{mol}$ and k is $1.3 \times 10^{-3} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$ for the reaction at 700 . K . What is the value of k for the reaction at 730 . K .
6. A mechanism for the gas-phase reaction between iodine and hydrogen is as follows:

Step 1: $\mathrm{I}_{2} \leftrightharpoons 2 \mathrm{I}$ (fast, equilibrium)
Step 2: $\mathrm{H}_{2}+\mathrm{I} \leftrightharpoons \mathrm{H}_{2} \mathrm{I}$ (fast, equilibrium)
Step 3: $\mathrm{H}_{2} \mathrm{I}+\mathrm{I} \rightarrow 2 \mathrm{HI}$ (slow)
a) Write the overall reaction. b) Identify the reaction intermediate?

Answer Set for Chem 1105-2016 Summer Problem Set \#3

1. $-\Delta[\mathrm{B}] / \Delta \mathrm{t}=1.53 \times 10^{-3} \mathrm{M} / \mathrm{s} ; \Delta[\mathrm{C}] / \Delta \mathrm{t}=4.59 \times 10^{-3} \mathrm{M} / \mathrm{s}$
2.a) rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{3}, 4^{\text {th }}$ order overall; b) $\mathrm{k}=0.0159 \mathrm{M}^{-3} \cdot \mathrm{~s}^{-1}$
3.a) 0.0803 M ; b) 87.0 hours; c) 241 hours; d) $\mathrm{t}_{1 / 2}=120$. hours
4.a) 0.00403 M ; b) $1.12 \times 10^{3} \mathrm{~s}$; c) 204 s
2. $\mathrm{k}=4.7 \times 10^{-3} \mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}$
6.a) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$; b) I, $\mathrm{H}_{2} \mathrm{I}$
