## Chem 1105-2016 Summer Problem Set \#2

## Note: Values may vary slightly depending on literature source used.

1. Why is $\Delta \mathrm{S}_{\text {vap }}$ of a substance always larger than $\Delta \mathrm{S}_{\text {fus }}$ ?
2. Predict the sign of $\Delta S_{\text {sys }}$ for each process: a) Gasoline vapours mix with air in a car engine. b) A solid explosive converts to a gas. c) Perfume vapours diffuse through a room.
3. For each reaction, predict the sign and find the value of $\Delta \mathrm{S}^{\circ}$ :
a) $3 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})$
b) $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
c) $\mathrm{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$
4. Oxyacetylene welding is used to repair metal structures such as bridges. Calculate $\Delta \mathrm{S}^{\circ}$ for the combustion of 1 mol of acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$.
5. With its components in their standard states, a certain reaction is spontaneous only at high T . What do you know about the signs of $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ ? Describe a process for which this is true.
6. Calculate $\Delta \mathrm{G}^{\circ}$ for each reaction using $\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}$ values:
a) $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
b) $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
c) $\mathrm{BaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{BaCO}_{3}(\mathrm{~s})$
7. Calculate $\Delta \mathrm{G}^{\circ}$ for the reactions in question \#6 using $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ values.
8. For the gaseous reaction of xenon and fluorine to form xenon hexafluoride:
a) Calculate $\Delta \mathrm{S}^{\circ}$ at $298 \mathrm{~K}\left(\Delta \mathrm{H}^{\circ}=-220 . \mathrm{kJ} / \mathrm{mol}\right.$ and $\left.\Delta \mathrm{G}^{\circ}=-206 \mathrm{~kJ} / \mathrm{mol}\right)$.
b) Assuming that $\Delta \mathrm{S}^{\circ}$ and $\Delta \mathrm{H}^{\circ}$ change very little with temperature, calculate $\Delta \mathrm{G}^{\circ}$ at 500 . K.
9. One reaction used to produce small quantities of pure $\mathrm{H}_{2}$ is

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \leftrightharpoons \mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

a) Determine $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for the reaction at 298 K .
b) Assuming that these values are relatively independent of temperature, calculate $\Delta \mathrm{G}$ at $28^{\circ} \mathrm{C}$, $128^{\circ} \mathrm{C}$, and $228^{\circ} \mathrm{C}$.
c) What is the significance of the different values of $\Delta \mathrm{G}$ ?
10. The equilibrium constant for the reaction

$$
2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Hg}_{2}^{2+}(\mathrm{aq}) \leftrightharpoons 2 \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{Hg}^{2+}(\mathrm{aq}) \mathrm{K}_{\mathrm{c}}=9.1 \times 10^{-6} \text { at } 298 \mathrm{~K}
$$

a) What is $\Delta \mathrm{G}^{\circ}$ at this temperature?
b) If standard-state concentrations of the reactants and products are mixed, in which direction will the reaction proceed?
c) Calculate $\Delta \mathrm{G}$ when $\left[\mathrm{Fe}^{3+}\right]=0.20 \mathrm{M},\left[\mathrm{Hg}_{2}{ }^{2+}\right]=0.010 \mathrm{M},\left[\mathrm{Fe}^{2+}\right]=0.010 \mathrm{M}$, and $\left[\mathrm{Hg}^{2+}\right]=0.025$ M . In which direction will the reaction proceed to reach equilibrium?

## Answer Set for Chem 1105-2016 Summer Problem Set \#2

1. The transition from liquid to gas involves a greater increase in dispersal energy and freedom of motion than does the transition from solid to liquid.
2.a) positive; b) positive; c) positive
3.a) negative, -172.4 J/K; b) positive, $141.6 \mathrm{~J} / \mathrm{K}$; c) negative, $-837 \mathrm{~J} / \mathrm{K}$
2. -97.2 J/K
3. $\Delta \mathrm{S}^{\circ}$ is positive and $\Delta \mathrm{H}^{\circ}$ is positive. Melting is an example.
4. a) $-1138 . \mathrm{kJ}$; b) $-1380 . \mathrm{kJ}$; c) -224 kJ
5. see question 6 .
8.a) $-0.047 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{K}$; b) $-197 \mathrm{~kJ} / \mathrm{mol}$
6. $\Delta \mathrm{H}^{\circ}=90.7 \mathrm{~kJ}, \Delta \mathrm{~S}^{\circ}=221 \mathrm{~J} / \mathrm{K}$; b) $24.3 \mathrm{~kJ}\left(28^{\circ} \mathrm{C}\right), 2.2 \mathrm{~kJ}\left(128^{\circ} \mathrm{C}\right),-19.9 \mathrm{~kJ}\left(228^{\circ} \mathrm{C}\right)$; c) For the reaction with the substances in their standard states, the reaction is non-spontaneous at $28^{\circ} \mathrm{C}$, near equilibrium at $128^{\circ} \mathrm{C}$, and spontaneous at $228^{\circ} \mathrm{C}$.
10.a) $2.9 \times 10^{4} \mathrm{~J} / \mathrm{mol}$; b) The reverse direction, formation of reactants, is spontaneous, so the reaction proceeds to the left; c) $7.0 \times 10^{3} \mathrm{~J} / \mathrm{mol}$, the reaction proceeds to the left to reach equilibrium.
