Chem 1105-2016 Summer Problem Set #2

Note: Values may vary slightly depending on literature source used.

1. Why is ΔS_{vap} of a substance always larger than ΔS_{fus} ?

2. Predict the sign of ΔS_{sys} for each process: a) Gasoline vapours mix with air in a car engine. b) A solid explosive converts to a gas. c) Perfume vapours diffuse through a room.

3. For each reaction, predict the sign and find the value of ΔS° : a) $3NO(g) \rightarrow N_2O(g) + NO_2(g)$ b) $3H_2(g) + Fe_2O_3(s) \rightarrow 2Fe(s) + 3H_2O(g)$ c) $P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$

4. Oxyacetylene welding is used to repair metal structures such as bridges. Calculate ΔS° for the combustion of 1 mol of acetylene(C₂H₂).

5. With its components in their standard states, a certain reaction is spontaneous only at high T. What do you know about the signs of ΔH° and ΔS° ? Describe a process for which this is true.

6. Calculate ΔG° for each reaction using ΔG_{f}° values: a) $2Mg(s) + O_{2}(g) \rightarrow 2MgO(s)$ b) $2CH_{3}OH(g) + 3O_{2}(g) \rightarrow 2CO_{2}(g) + 4H_{2}O(g)$ c) $BaO(s) + CO_{2}(g) \rightarrow BaCO_{3}(s)$

7. Calculate ΔG° for the reactions in question #6 using ΔH_{f}° and ΔS° values.

8. For the gaseous reaction of xenon and fluorine to form xenon hexafluoride:

a) Calculate ΔS° at 298 K (ΔH° = -220. kJ/mol and ΔG° = -206 kJ/mol).

b) Assuming that ΔS° and ΔH° change very little with temperature, calculate ΔG° at 500. K.

9. One reaction used to produce small quantities of pure H₂ is $CH_3OH(g) \rightleftharpoons CO(g) + 2H_2(g)$

a) Determine ΔH° and ΔS° for the reaction at 298 K.

b) Assuming that these values are relatively independent of temperature, calculate ΔG at 28°C, 128°C, and 228°C.

c) What is the significance of the different values of ΔG ?

10. The equilibrium constant for the reaction

 $2Fe^{3+}(aq) + Hg_2^{2+}(aq) \Rightarrow 2Fe^{2+}(aq) + 2Hg^{2+}(aq)$ K_c = 9.1×10⁻⁶ at 298 K a) What is ΔG° at this temperature?

b) If standard-state concentrations of the reactants and products are mixed, in which direction will the reaction proceed?

c) Calculate ΔG when $[Fe^{3+}] = 0.20$ M, $[Hg_2^{2+}] = 0.010$ M, $[Fe^{2+}] = 0.010$ M, and $[Hg^{2+}] = 0.025$ M. In which direction will the reaction proceed to reach equilibrium?

Answer Set for Chem 1105-2016 Summer Problem Set #2

1. The transition from liquid to gas involves a greater increase in dispersal energy and freedom of motion than does the transition from solid to liquid.

2.a) positive; b) positive; c) positive

3.a) negative, -172.4 J/K; b) positive, 141.6 J/K; c) negative, -837 J/K

4. -97.2 J/K

5. ΔS° is positive and ΔH° is positive. Melting is an example.

6. a) -1138. kJ; b) -1380. kJ; c) -224 kJ

7. see question 6.

8.a) -0.047 kJ/mol·K; b) -197 kJ/mol

9. $\Delta H^{\circ} = 90.7 \text{ kJ}, \Delta S^{\circ} = 221 \text{ J/K}; \text{ b}) 24.3 \text{ kJ}(28^{\circ}\text{C}), 2.2 \text{ kJ}(128^{\circ}\text{C}), -19.9 \text{ kJ}(228^{\circ}\text{C}); \text{ c})$ For the reaction with the substances in their standard states, the reaction is non-spontaneous at 28°C, near equilibrium at 128°C, and spontaneous at 228°C.

10.a) 2.9×10^4 J/mol; b) The reverse direction, formation of reactants, is spontaneous, so the reaction proceeds to the left; c) 7.0×10^3 J/mol, the reaction proceeds to the left to reach equilibrium.