Chem 1105-2015 Summer Problem Set \#4

1. Write the expression for K_{c} for each of the following equilibrium:
a) $2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
b) $\mathrm{SrCO}_{3}(\mathrm{~s}) \leftrightharpoons \mathrm{SrO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
c) $2 \mathrm{HBr}(\mathrm{g}) \leftrightharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{l})$
d) $\mathrm{P}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{P}_{4} \mathrm{O}_{6}(\mathrm{~s})$
2. Given the equilibrium constants for the following reactions at a particular temperature:

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=1.7 \times 10^{-4}
$$

calculate the value for the equilibrium constant, K_{c}, for the following reaction

$$
3 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{~N}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{NH}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=?
$$

at the same temperature.
3. Initially, 0.84 moles of $\mathrm{PCl}_{5}(\mathrm{~g})$ and 0.18 moles of $\mathrm{PCl}_{3}(\mathrm{~g})$ are mixed in a 1.0 L container. It is later found that only 0.72 moles of PCl_{5} are pressent when the system has reached equilibrium. Calculate the value of K_{c} for the reaction

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \leftrightharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}
$$

4. When 4.0 moles of $\mathrm{HI}(\mathrm{g})$ are placed in a 2.0 L container at $25^{\circ} \mathrm{C}$ and allowed to dissociate according to the equation

$$
2 \mathrm{HI}(\mathrm{~g}) \leftrightharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

it is found that $20 . \%$ of the HI has dissociated at equilibrium. Calculate K_{c} and K_{p}.
5. Nitrosyl bromide, $\operatorname{NOBr}(\mathrm{g})$, decomposes according to the equation

$$
\operatorname{NOBr}(\mathrm{g}) \leftrightharpoons \mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=0.15 \text { at } 350^{\circ} \mathrm{C}
$$

If 1.0 atm of $\mathrm{NOBr}, 0.8 \mathrm{~atm}$ of NO , and 0.4 atm of Br_{2} are mixed at $350^{\circ} \mathrm{C}$, will any net reaction occur? If a net reaction is observed, will NO be formed or consumed?
6. Consider the following reaction

$$
\mathrm{ZnS}(\mathrm{~s}) \leftrightharpoons \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{c}}=1.1 \times 10^{-21}
$$

If a small amount of $\mathrm{ZnS}(\mathrm{s})$ is placed in water what is the equilibrium concentrations of Zn^{2+}.
7. At $633^{\circ} \mathrm{C}, 3.60$ moles of ammonia are placed in a 2.00 L vessel and allowed to decompose to the elements.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=6.56 \times 10^{-3} \text { at } 633^{\circ} \mathrm{C}
$$

Calculate the equilibrium concentration of each reagent
8. Consider the following equilibrium

$$
2 \mathrm{NOBr}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-344 \mathrm{~kJ}
$$

Using LeChatelier's Principle predict the effect of the following changes on the position of the equilibrium. a) Addition of more Br_{2}. b) Removal of some NOBr. c) Increse in container volume. d) Decrease in temperature. e) Addition of a catalyst.

Answer Set for Chem 1105-2015 Summer Problem Set \#4

1.

a) $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NO}(\mathrm{g})]^{2}\left[\mathrm{O}_{2}(\mathrm{~g})\right]}{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2}}$
b) $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}(\mathrm{~g})\right]$
c) $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}(\mathrm{~g})\right]}{[\mathrm{HBr}(\mathrm{g})]^{2}}$
d) $K_{c}=\frac{1}{\left[P_{4}(g)\right]\left[\mathrm{O}_{2}(\mathrm{~g})\right]^{3}}$
2. $\mathrm{K}_{\mathrm{c}}=1.3 \times 10^{-2}$
3. $K_{c}=0.050$
4. $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}=0.0156$
5. $\mathrm{Q}=0.5>\mathrm{K}_{\mathrm{p}}$. Therefore, NO and and Br_{2} are consumed and produce more NOBr .
6. $\left[\mathrm{Zn}^{2+}\right]=3.3 \times 10^{-11} \mathrm{M}$
7. $\left[\mathrm{NH}_{3}(\mathrm{~g})\right]=1.49 \mathrm{M},\left[\mathrm{H}_{2}(\mathrm{~g})\right]=0.459 \mathrm{M},\left[\mathrm{N}_{2}(\mathrm{~g})\right]=0.153 \mathrm{M}$
8.a) Equilibrium will shift to the left. b) Equilibrium will shift to the left. c) Equilibrium will shift to the right. d) Equilibrium will shift to the right. e) No affect on the position of the equilibrium. System will obtain equilibrium faster.

