

A homogeneous mixture of pure substances.

Solvent: Major component of a liquid mixture.

Solute: Minor component of a liquid mixture.

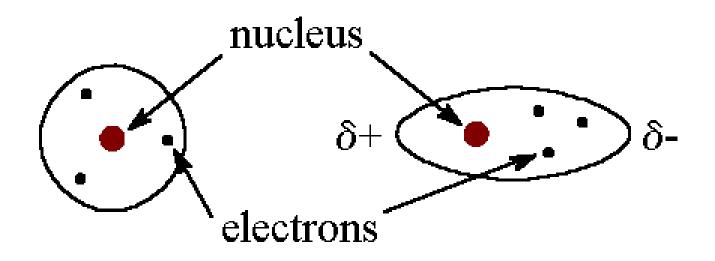
Solubulity:

The extent in which one substance dissolves in another.

A soluble substance dissolves in a solvent. An insoluble solute does not dissolve to a significant extent in a solvent.

"Like dissolves like."

Intermolecular Forces:


1. Dipole-Dipole Forces: Attractive forces occuring in polar molecules. Don't exist in nonpolar molecules.

Ex: H-F

Substance	Dipole Moment(D)	Boiling Point(°C)
C ₃ H ₈	0.1	-42
C ₂ H ₆ O	1.9	-25
CH ₃ CN	3.9	82

Intermolecular Forces cont...:

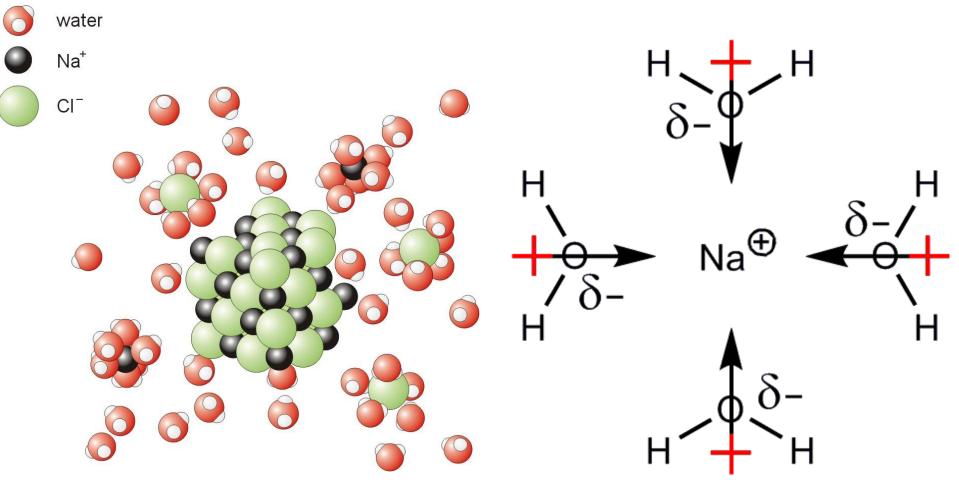
- 2. Dispersion Forces(London Forces): Attractive forces occuring in nonpolar and polar molecules. Movement of electrons results in a temporary and instantaneous dipole.
- Ex: Ar, He, CH₄

symmetrical distribution

unsymmetrical distribution

London Forces increase as the number of electrons and thus the size of the molecule increases.

Substance	Melting Point(°C)
CH ₄ (smallest)	-182.5
CF ₄	-150.0
CCl ₄	-23.0
CBr ₄	+90.0
CI ₄ (largest)	+171.0


Intermolecular Forces cont...:

- As molecule gets bigger(more electrons), London Forces get stronger and more energy needed to separate molecules.
- 3. Hydrogen Bonding: Attractive force occuring in molecules containing hydrogen atoms directly bonded to a small electronegative atom(N,O, F).

Ex: HF, H₂O

Ion-Dipole Forces:

Interaction between an ion and the partial charge of a polar molecule.

Energetics of Solution Formation:

$$\Delta H_{\text{soln}} = \Delta H_{\text{solute}} + \Delta H_{\text{solvent}} + \Delta H_{\text{mix}}$$

ΔH_{soln} : Enthalpy of Solution.

 ΔH_{soln} > 0: Endothermic. More energy needed to separate the pure components than energy released on solution formation.

 ΔH_{soln} < 0: Exothermic. More energy released on solution formation than required to separate pure components.