SIGNIFICANT FIGURES

All measured quantities have a certain degree of uncertainty associated with the measurement.

SIG.FIGS indicate the amount of uncertainty in a measurement.

SIG.FIGS. are all those digits in a

 measurement that are known with complete certainty and one digit that is guessed.15.0 km indicates more precision than 15 km .

Rules For Determining the

 Number of Significant Figures:1. All numbers greater than zero are significant.

Number	\# Sig Figs
14.2	3
1218	4
2	1

Sig. Figs cont..

2. Zeros between non-zero numbers are significant.

Number	\# Sig Figs
101	3
1001	4
1.004	4

Sig. Figs cont..

3. Zeros used to locate decimal places and to the left of non-zero digits are not significant.

Number	\# Sig Figs
0.006	1
0.0614	3
0.7	1

Sig. Figs cont..

4. All zeros to the right of a non-zero digit containing a decimal are significant.

Number	\# Sig Figs
10.010	5
12.000	5
0.00500	3

Sig. Figs. cont...

5. Zeros to the right of a non-zero digit containing no decimal are not significant. Ex: 400 contains one significant figure. If 400 contains 2 or $\mathbf{3}$ significant figures it can be indicated as follows:

400 or $\mathbf{4 . 0 \times 1 0 ^ { 2 }}$ for 2 significant figures
400 or 4.00×10^{2} for 3 significant figs

Sig. Figs cont..

6. Exact values such as definate values and counting numbers $(1,2,3$, etc.) have an infinite number of significant figures.
Ex: $1 \mathrm{~L}=\mathbf{1 0 0 0} \mathbf{~ m L}$, the number $\mathbf{1 0 0 0}$ has an infinite number of significant figures.

Rounding Significant Figures:

1. If the first unwanted digit is less than five, discard all unwanted digits and leave all wanted digits alone.
Ex: If $\mathbf{3 . 7 2 4 7}$ is rounded to $\mathbf{3}$ significant figures, the result is

Rounding Significant Figures cont.:

2. If the first unwanted digit is greater than five, discard all unwanted digits and increase the last wanted figure by one. Ex: If $\mathbf{8 . 5 6 4 7 3}$ is rounded to $\mathbf{4}$ significant figures, the result is

$$
8.565
$$

Calculations Using Significant Figures:

- Addition/Subtraction:
- The result of the calculation must be rounded off to the same number of decimal places as the term used in the problem with the least number of decimal places.

Ex: 161.032

 contains one digit after decimal
$+32.4524$
199.0844 calculator

round to 199.1

Calculations Using Significant

Figures cont..:

- Multiplication/Division:
- The result of the calculation must contain the same number of significant figures as the term used in the calculation with the least number of significant figures.

Ex: $\quad 152.06 \Leftarrow$ contains 5 significant $\underset{\mathbf{3 6 . 4 9 4 4}}{\times \mathbf{0} .24} \Leftarrow$ contains 2 significant
must be rounded to 36

SIG.FIGS. and Scientific Notation:

 The number of SIG.FIGS. only expressed in the pre exponential term.| Sci Notation | \# SIG.FIGS. |
| :---: | :---: |
| $\mathbf{1 \times 1 0 ^ { 9 }}$ | $\mathbf{1}$ |
| $1.0 \times \mathbf{1 0}^{\mathbf{6}}$ | $\mathbf{2}$ |
| 1.650×10^{-8} | 4 |

