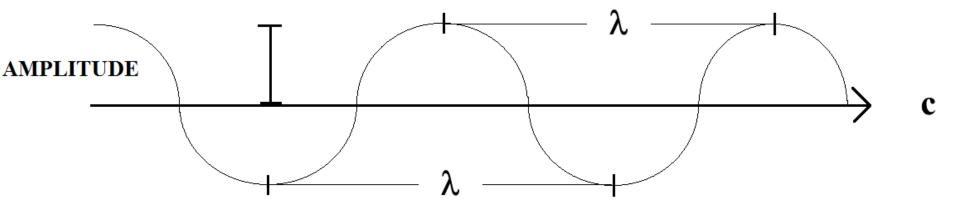

Chemistry 1104 Lab: Line Spectra

Goals:

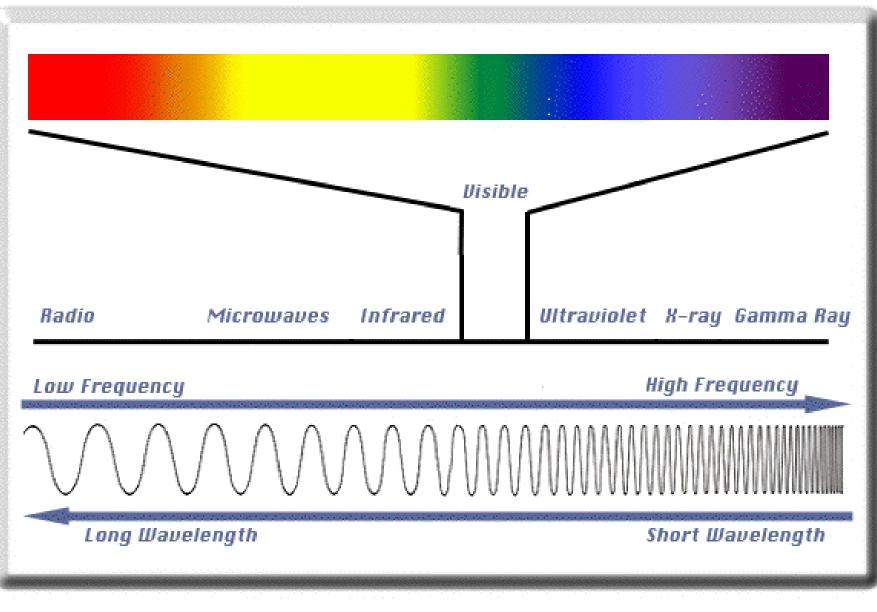
- 1. Introduction to Line Spectra of Atoms.
- 2. Compare Line spectrum of Hydrogen to known values and calculated values.
- 3. Determine the electron transitions observed in Hydrogen.
- 4. Examine the emission spectrum for various light sources and cationic elements.


Electromagnetic Radiation:

Electromagnetic(EM) radiation is the transmission of energy in the form of a wave. Consists of an electric and magnetic component.

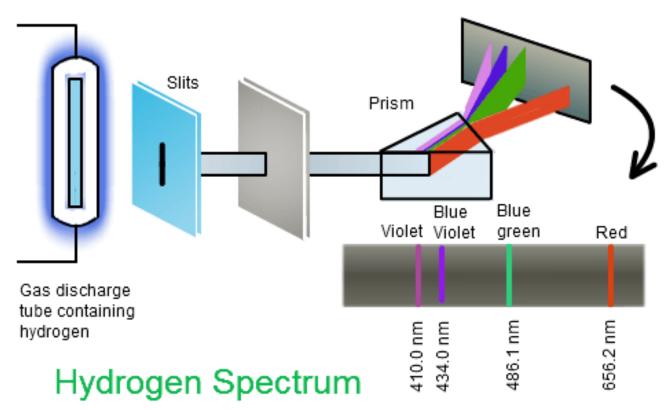
Wave Parameters of Measurement:

- λ: wavelength(in metres or nanometers)
 u: speed(in m/s)
- c= speed of light in vacuum(3.00×10⁸m/s)
- v: frequency(in Hz or s⁻¹)



In vacuum.

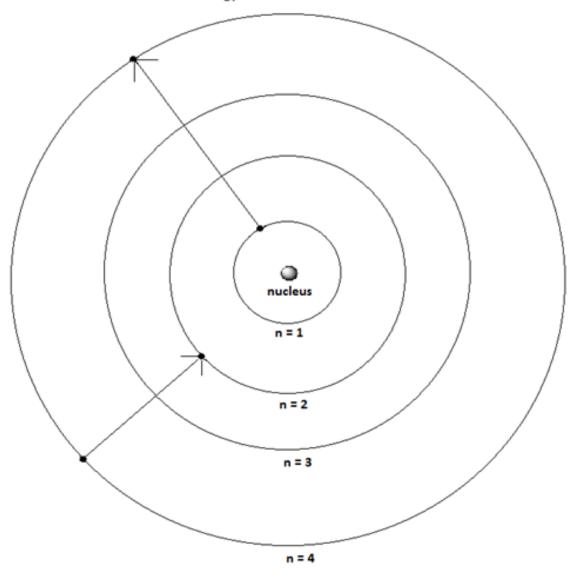
$$\lambda = \frac{c}{v} \qquad c = \lambda \cdot v$$


c = 3.00×10^8 m/s 1 Å = 1×10^{-10} m 1 nm = 1×10^{-9} m

Electromagnetic Spectrum:

Atomic Spectra:

When elements are exposed to energy(heat, light, electrical energy) certain wavelengths of light are emitted and is known as a line spectrum.

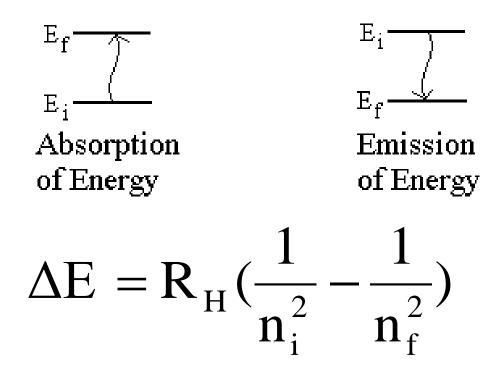

Planck's Equation:

E = hv

E: energy(in joules) h: Planck's constant($h = 6.626 \times 10^{-34} J \cdot s$)

Bohr's Model of the Hydrogen Atom:

Atom absorbs energy. Electron excited from n = 1 to n = 4.



Electron moves from n = 4 to n = 2. Light emitted. 486 nm(Blue-green).

Bohr's Model of the Hydrogen Atom:

- The electron travels around the nucleus in well defined fixed orbits.
- **Electrons in orbits closest to the nucleus are the lowest in energy.**
- For an electron to be excited from a low orbit to a high orbit it must absorb a specific amount of energy. When the electron goes from a high orbit to a lower orbit a specific amount of energy is given off.

Bohr's Model of the Hydrogen Atom:

∆E: energy absorbed or emitted R_H: Rydberg Constant(2.179×10⁻¹⁸J) Ex: Calculate the energy absorbed or given off when an electron travels from the n = 5 to the n = 2level.

$$\Delta E = R_{\rm H} \left(\frac{1}{n_{\rm i}^2} - \frac{1}{n_{\rm f}^2} \right)$$

$R_{\rm H} = 2.179 \times 10^{-18} J$

Ex: Calculate the wavelength of this light?

$$\lambda = \frac{hc}{\Delta E}$$

Observe and record the wavelengths of light given off by a Hydrogen Lamp.

Note Wavelength measured in spectroscope. Scale 4 to 7 corresponds to 400 nm to 700 nm.

Determine line spectrum for Hydrogen and one other element.

Part B:

Certain ionic compounds give off certain colors when excited.

Color Absorbed	Color Observed	Wavelenght Range Absorbed(nm)
Violet	Yellow-Green	400-435
Blue	Yellow	435-480
Green-Blue	Orange	480-490
Blue-Green	Red	490-500
Green	Purple	500-560
Yellow-Green	Violet	560-580
Yellow	Blue	580-595
Orange	Green-Blue	595-605
Red	Blue-Green	605-750

Part B: cont

Record color of flame produced when certain ionic compounds are aspirated into an open flame.

Determine emission line for cations.

CAUTION: Open flame. Danger of Burns.

Part C:

Compare the light spectrum for fluorescent light to that of sunlight. Note the differences.

Part D:

Calculate the energy in Joules(J) and wavelength in nanomoeters (nm) for transition of an electron in Hydrogen.

Complete Table 3 and 4.

Compare your experimental observations from Part A for Hydrogen to the calculated results for Part D.

Determine the electron transition causing the observed line spectrum for hydrogen.