Chemistry 1104 Lab: Volumetric

Goals:

1. Introduction to Volumetric Glassware.
2. Precision of Volumetric Glassware.
3. Introduction to Concentration

Molarity
4. Preparation of a Solution of known

Molarity from a) solid b) dilution.

Volumetric Glassware:

 Graduated Cylinder TC: To ContainSizes
10.0 mL

Precision $\pm 0.1 \mathrm{~mL}$ 25.0 mL
50.0 mL 100.0 mL

Reading a Graduated Cylinder:

TC: To Contain

Volumetric Flask

TC: to contain

Used to prepare solutions of known concentration.

Sizes
Precision
$25.00 \mathrm{~mL} \quad \pm 0.01 \mathrm{~mL}$
50.00 mL 100.00 mL 250.00 mL

Volumetric Pipet TD: To Deliver

Used to dispense specific volumes of liquid. Sizes:1.00 mL, 2.00 mL , $5.00 \mathrm{~mL}, 10.00 \mathrm{~mL}, 20.00 \mathrm{~mL}$, 25.00 mL

Precision $\pm \mathbf{0 . 0 1} \mathbf{~ m L}$

Buret

 TD: To DeliverUsed to dispense known amounts of liquid of various volume. Size: $\mathbf{5 0} \mathbf{~ m L}$ max capacity typically. Precision $\pm 0.01 \mathbf{~ m L}$

When Full Volume recorded 0.00 mL

Reading a Buret:

When full the volume recorded with a buret is 0.00 mL . Buret TD. Full buret not recorded as 50 mL . WRONG!

8.20 mL

Part A:
Determining volume of a test tube using a Graduated cylinder.

Part B:
Determining volume of same test tube using a buret.

Part C:
Determining the precision of a volumetric pipet by measuring the mass of water Dispensed by the pipet.

Record mass of small beaker before and after. Recommend using 10 mL pipet. Volume recorded as 10.00 mL .

NOTE: $\operatorname{mass}(g)$ of water $=\operatorname{volume}(\mathbf{m L})$

Part D:

Introduction to Molarity.

$$
\operatorname{Molarity}(\mathrm{M})=\frac{\text { moles of solute }}{\text { volume of solution }(\mathrm{L})}
$$

For example a 4.00 M HCl solution indicates That there is 4.00 mol HCl for every 1 L of solution.

Part D: cont...

Preparing a solution using a volumetric flask and a known mass of a solid(solute).
$\mathrm{CuSO}_{4} \cdot \mathbf{5 H}_{\mathbf{2}} \mathrm{O}$
$\mathrm{MW}=249.68 \mathrm{~g} / \mathrm{mol}$
Assigned a Molarity. Assigned Volume: 100.00 mL

Part D: cont...

The mass of solute depends on Molarity and the volume of solution needed.

$100.00 \mathrm{~mL}=\mathbf{0 . 1 0 0 0 0} \mathbf{L}$

$0.10000 \mathrm{~L} \times \frac{\text { moles of solute }}{\text { volume of solution }(\mathrm{L})}(\mathrm{M})=$ moles solute moles solute $\times \frac{\text { mass of solute }(\mathrm{g})}{\text { mole solute }}($ Molar Mass $)=\mathrm{g}$ of solute

Part D: cont...
Weigh out desired mass of solute.

Record mass used.

Mass of solute used \rightarrow moles solute

$$
\operatorname{Molarity}(\mathrm{M})=\frac{\text { moles of solute }}{0.10000(\mathrm{~L})}
$$

Part D: cont...

Use spec20 to determine if solution prepared correctly. Spec20 measures the amount of light absorbed by the aqueous solution.

Record Absorbance.

Part E:

Preparation of a solution of known concentration by dilution of a stock solution of known concentration.

$$
M_{1} \times V_{1}=M_{2} \times V_{2}
$$

M_{1} : Molarity of stock solution \mathbf{V}_{1} : Volume of stock solution
\mathbf{M}_{2} : Molarity of dilute solution \mathbf{V}_{2} : Volume of dilute solution

