Chemistry 1104 Lab: Volumetric

Goals:

- 1. Introduction to Volumetric Glassware.
- 2. Precision of Volumetric Glassware.
- 3. Introduction to Concentration Molarity
- 4. Preparation of a Solution of known Molarity from a) solid b) dilution.

Volumetric Glassware: Graduated Cylinder

TC: To Contain

Least Precise

Sizes Precision

 $10.0 \text{ mL} \qquad \pm 0.1 \text{ mL}$

25.0 mL

50.0 mL

100.0 mL

Reading a Graduated Cylinder:

TC: To Contain

Volumetric Flask TC: to contain

Used to prepare solutions of known concentration.

Sizes $25.00 \text{ mL} \pm 0.01 \text{ mL}$ 50.00 mL $100.00 \, \mathrm{mL}$ 250.00 mL

Precision

Volumetric Pipet TD: To Deliver

Used to dispense specific volumes of liquid.

Sizes:1.00 mL, 2.00 mL, 5.00 mL, 10.00 mL, 20.00 mL, 25.00 mL

Precision ± 0.01 mL

Buret

TD: To Deliver

Used to dispense known amounts of liquid of various volume.

Size: 50 mL max capacity typically. Precision ± 0.01 mL

When Full Volume recorded 0.00 mL

Reading a Buret:

When full the volume recorded with a buret is 0.00 mL.

Buret TD.

Full buret not recorded as 50 mL. WRONG!

8.20 mL

Part A:

Determining volume of a test tube using a Graduated cylinder.

Part B:

Determining volume of same test tube using a buret.

Part C:

Determining the precision of a volumetric pipet by measuring the mass of water Dispensed by the pipet.

Record mass of small beaker before and after. Recommend using 10 mL pipet. Volume recorded as 10.00 mL.

NOTE: mass(g) of water = volume(mL)

Part D: Introduction to Molarity.

Molarity(M) =
$$\frac{\text{moles of solute}}{\text{volume of solution(L)}}$$

For example a 4.00 M HCl solution indicates That there is 4.00 mol HCl for every 1 L of solution.

Part D: cont...

Preparing a solution using a volumetric flask and a known mass of a solid(solute).

 $CuSO_4.5H_2O$ MW = 249.68 g/mol

Assigned a Molarity.
Assigned Volume: 100.00 mL

Part D: cont...

The mass of solute depends on Molarity and the volume of solution needed.

100.00 mL = 0.10000 L

$$0.10000 L \times \frac{\text{moles of solute}}{\text{volume of solution(L)}} (M) = \text{moles solute}$$

moles solute
$$\times \frac{\text{mass of solute}(g)}{\text{mole solute}}$$
 (Molar Mass) = g of solute

Part D: cont...
Weigh out desired mass of solute.

Record mass used. Mass of solute used \rightarrow moles solute

Molarity(M) =
$$\frac{\text{moles of solute}}{0.10000(L)}$$

Part D: cont...

Use spec20 to determine if solution prepared correctly. Spec20 measures the amount of light absorbed by the aqueous solution.

Record Absorbance.

Part E:

Preparation of a solution of known concentration by dilution of a stock solution of known concentration.

$$\mathbf{M}_1 \times \mathbf{V}_1 = \mathbf{M}_2 \times \mathbf{V}_2$$

M₁: Molarity of stock solution

V₁: Volume of stock solution

M₂: Molarity of dilute solution

V₂: Volume of dilute solution