Chemistry 1105 Lab: Fatty Acids

Goals:

1. Introduction to Titration.
2. Prepare and standardize 0.1 M NaOH .
3. Determine the Percentage of Acetic Acid(weight/volume) in Vinegar.

Acid-Base Titration:

A titration is a process in which a controlled volume of one reagent(titrant) is added to a known amount or volume of a second reagent until a complete reaction is observed.

Base + Acid \rightarrow Salt + Water

Preparation of 0.1 M NaOH : Preparation of 150 . mL of a solution of 0.1 M NaOH by dilution of a 1 M NaOH stock solution.

$$
M_{1} \times V_{1}=M_{2} \times V_{2}
$$

M_{1} : Molarity of stock solution \mathbf{V}_{1} : Volume of stock solution
\mathbf{M}_{2} : Molarity of dilute solution $\mathbf{V}_{\mathbf{2}}$: Volume of dilute solution

Standardization of $0.1 \mathrm{M} \mathrm{NaOH}:$

Base + Acid \rightarrow Salt + Water
$\mathrm{NaOH}+\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4} \rightarrow \mathrm{KNaC}_{8} \mathrm{H}_{4} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
? M mL

$\mathbf{~}$ \downarrow
moles $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$

moles $\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}=$ moles NaOH at equivalence point

Determination of the Endpoint/Equivalence

Point:

 Equivalence point determined using acidbase indicator.

Equivalence point is volume of base where the moles base = moles acid.

Endpoint. Volume of base that turns indicator color.

Determining Percent Acetic Acid in Vinegar:

$$
\text { Percent Acetic Acid }\left(\frac{\mathbf{w}}{\mathbf{v}}\right)=\frac{\text { mass of acetic acid }(\mathrm{g})}{\mathbf{1 0 0 . 0 0} \mathrm{mL} \text { of solution }}
$$

NOTE: Can not analyse unaltered vinegar. Will perform $1 / 10^{\text {th }}$ dilution.

Will analyse $\mathbf{2 5 . 0 0} \mathbf{~ m L}$ of this diluted vinegar.

Base + Acid \rightarrow Salt + Water $\mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$

Base NaOH
$+$
$+\mathrm{CH}_{3} \mathrm{COOH}$

(now known)
0.1 M mL \downarrow moles NaOH

M = moles/volume (\mathbf{L}) 25.00 mL DILUTE \uparrow $=$ moles $\mathrm{CH}_{3} \mathbf{C O O H}$

Finding the Percent Acetic Acid:

Percent Acetic acid is the mass of acetic $\operatorname{acid}(\mathrm{g})$ in $\mathbf{1 0 0 . 0 0} \mathbf{~ m L}$.

Percent Acetic Acid $\left(\frac{\mathrm{w}}{\mathrm{v}}\right)=\operatorname{Molarity}\left(\frac{\text { moles }}{L}\right) \times \frac{60.05 \mathrm{~g} \text { acetic acid }}{\text { mole }} \times 0.10000 L$

Expected value: 7.\% w/v

