Stoichiometry and Limiting Reagent:

A reaction equation represent or depict a process in which the reactants or starting materials are converted into products.

Reactant $\mathbf{1}+$ Reactant $\mathbf{2} \rightarrow$ Product
\rightarrow Symbolizes "yields"

Stoichiometry:

Consider the reaction

$$
X+Y \rightarrow Z
$$

This tells the reader that
1 unit of X reacts with 1 unit of Y and yields
1 unit of Z.
Likewise,
1 mole of $X+1$ mole Y yields 1 moles Z

Ex: How much Z is produced if 15.0 mol of X is used with excess Y ?

$$
X+Y \rightarrow Z
$$

From reaction equation

$$
1 \text { mole } X=1 \text { mole } \mathbb{Z}
$$

$15.0 \mathrm{~mol} \mathrm{X} \times \frac{1 \mathrm{~mol} \mathrm{Z}}{1 \mathrm{~mol} \mathrm{X}}=15.0 \mathrm{~mol} \mathrm{Z}$

Ex: 2 How much \mathbf{Z} is produced if $\mathbf{1 5 . 0}$ mol of A is used with excess B an an alternate synthesis?

$$
2 A+3 B \rightarrow Z
$$

From reaction equation

$$
2 \text { mole } \mathbf{A}=1 \text { mole } \mathbb{Z}
$$

$15.0 \mathrm{~mol} \mathrm{~A} \times \frac{1 \mathrm{~mol} \mathrm{Z}}{2 \mathrm{~mol} \mathrm{~A}}=7.50 \mathrm{~mol} \mathrm{Z}$

Yield:

Actual Yield: The amount of product actually obtained in a synthesis. "Real world result."

Theoretical Yield: The amount of product that should be obtained based on the amount of reactants used in the reaction. "Expected"
percent yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%$

Limiting Reagent:

Limiting reagent is the reagent used in the synthesis that is consumed completly and limits how much product is obtained.

Consider the reaction
X
$+$

If 12.5 mol of X is reacted with 11.0 mol of Y.

Consider the reaction

Experiment Reaction:

$\mathrm{CaCl}_{2} \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { aq })}$
 $\mathrm{CaC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$

$+$
$\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$
$2 \mathrm{KCl}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Will prepare a mixture of the two reactants $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ and $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ and dissolve in water.

Then predict the limiting reagent and the theoretical yield.

Vacuum Filtration:

Remove rubber tubing connection from aspirator before turning off water

