Chemistry 1101 Lab: Cu Cycle

Experiment investigates the various properties of copper(Cu).

Writing reaction equations.

Reactants \rightarrow **Products**

The five step process of the copper cycle is summarized in the following diagram.

Step 1:Dissolution and Oxidation Oxidation process where electrons are lost. Cu(s) oxidized by HNO_3 . $Cu(s) \rightarrow Cu^{2+}(aq)$

 $HNO_{3}(aq) \rightarrow NO_{2}(g) + H_{2}O(l)$ In water HNO₃ exists as H⁺ and NO₃⁻.

 $Cu^{2+}(aq)$ and $NO_3^-(aq) \rightarrow Cu(NO_3)_2$

Step 2:Conversion Adding NaOH(aq). Source of Na⁺ and OH⁻ ions.

$Cu(NO_3)_2(aq) \rightarrow Cu(OH)_2(s)$ Separated by using a centrifuge.

Step 3: Decomposition

$Cu(OH)_2(s) \rightarrow CuO(s) + H_2O(g)$

Done in presence of heat.

Step 4: Soluble Salt

 $CuO(s) \rightarrow CuSO_4(aq)$

Done in H₂SO₄. Source of 2H⁺ and SO₄²⁻.

O²⁻ replaced by SO₄²⁻.

Step 5: Regeneration

$Cu^{2+}(aq) + Zn(s) \rightarrow Cu(s) + Zn^{2+}(aq)$

Step 6: Removal of Unreacted Zn

HCl added to react with any unreacted Zn(s).

Zn oxidized to $Zn^{2+}(aq)$. HCl source of H⁺(aq) and Cl⁻(aq). H⁺(aq) reduced to H₂(g).

Calculate % Recovery

 $Percent \, Recovery = \, \frac{mass \, of \, material \, recovered}{mass \, of \, starting \, material} \times 100\%$