## Chem 1104-2018 Summer Problem Set \#7

1. Calculate the wavelength in meters of electromagnetic radiation with a frequency of $5.5 \times 10^{15} \mathrm{~Hz}$.
2. The photoelectric effect consists of the emission of electrons from the surface of a metal when the metal is exposed to light. A photon with a minimum energy of $3.87 \times 10^{-19} \mathrm{~J}$ is necessary to eject an electron from the metal barium. a) What frequency and wavelength(in nanometers) corresponds to this value? b) Will blue light with a wavelength of 450 nm work?
3. a) What is the de Broglie wavelength (in meters) of a baseball weighing 145 g and travelling at $156 \mathrm{~km} / \mathrm{h}$ (must convert to $\mathrm{m} / \mathrm{s}$ )?
b) Calculate the mass(in mg ) of a flying mosquito with a de Broglie wavelength of $3.10 \times 10^{-31} \mathrm{~m}$ and speed of $1.38 \mathrm{~m} / \mathrm{s}$ ?
4. a) What is the wavelength (in nanometers) of electromagnetic radiation which corresponds to the transition from the $\mathrm{n}=6$ level to the $\mathrm{n}=1$ level in the hydrogen atom?
b) A hydrogen atom emits electromagnetic radiation with a wavelength of 434.0 nm when an electron moves from an outer energy level to the $\mathrm{n}=2$ level. What energy level is the electron initally located?
5. a) Calculate the uncertainty in the velocity of a 1.00 g particle if the uncertainty in the position is 0.0100 nm .
b) Calculate the uncertainty in the position of a proton(mass $=1.67 \times 10^{-24} \mathrm{~g}$ ) if the uncertainty in the velocity of the proton is $1.00 \mathrm{~m} / \mathrm{s}$.
6. Write the electron configuration for the following atoms and ions using both the complete notation and shorthand notation. a) Ba ; b) Pb ; c) $\mathrm{Nb}^{2+}$; d) Xe ; e) $\mathrm{Lu}^{+}$
7. State the number of unpaired electrons for each of the species in Question \#6 and determine if they are paramagnetic or diamagnetic.
8. State the orbital that corresponds to the following quantum numbers:
a) $\mathrm{n}=2,1=1, \mathrm{~m}_{\mathrm{l}}=1$; b) $\mathrm{n}=4,1=3, \mathrm{~m}_{\mathrm{l}}=-2$; c) $\mathrm{n}=3,1=2, \mathrm{~m}_{\mathrm{l}}=-1$; d) $\mathrm{n}=5,1=1, \mathrm{~m}_{\mathrm{l}}=1$
9. Why can't an electron have the following quantum numbers?
a) $\mathrm{n}=2, \mathrm{l}=2, \mathrm{~m}_{\mathrm{l}}=1$; b) $\mathrm{n}=3, \mathrm{l}=0, \mathrm{~m}_{\mathrm{l}}=3$; c) $\mathrm{n}=5,1=-2, \mathrm{~m}_{\mathrm{l}}=1$

## Answer Set for Chem 1104-2018 Summer Problem Set \#7

1. $\lambda=5.5 \times 10^{-8} \mathrm{~m}$
2.a) $v=5.99 \times 10^{14} \mathrm{~Hz}, \lambda=500 \mathrm{~nm}$; b) yes
3.a) $\lambda=1.06 \times 10^{-34} \mathrm{~m}$; b) mosquito weighs 1.55 mg .
4.a) $\lambda=93.75 \mathrm{~nm}$; b) $\mathrm{n}=5$.
5.a) $5.28 \times 10^{-21} \mathrm{~m} / \mathrm{s}$; b) 31.6 nm
2. Full notation:
a) Ba: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2}$
b) $\mathrm{Pb}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6} 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{6} 6 \mathrm{~s}^{2} 4 \mathrm{f}^{14} 5 \mathrm{~d}^{10} 6 \mathrm{p}^{2}$
c) $\mathrm{Nb}^{2+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6} 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{1}$
d) $\mathrm{Xe}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6} 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{6}$
e) $\mathrm{Lu}^{+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6} 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{6} 6 \mathrm{~s}^{2} 4 \mathrm{f}^{14}$

Shorthand Notation:
a) Ba: $[\mathrm{Xe}] 6 \mathrm{~s}^{2}$
b) $\mathrm{Pb}:[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{14} 5 \mathrm{~d}^{10} 6 \mathrm{p}^{2}$
c) $\mathrm{Nb}^{2+}:[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{1}$
d) $\mathrm{Xe}:[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{6}$
e) $\mathrm{Lu}^{+}:[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{14}$
7.
a) $\mathrm{Ba}: 0$ (diamagnetic)
b) $\mathrm{Pb}: 2$ (paramagnetic)
c) $\mathrm{Nb}^{2+}: 1$ (paramagnetic)
d) $\mathrm{Xe}: 0$ (diamagnetic)
e) $\mathrm{Lu}^{+}: 0$ (diamagnetic)
8. a) 2 p ; b) 4 f; c) 3 d ; d) 5 p
9. a) 1 can not exceed $n-1$. For $n=2,1=0,1$.
b) For $l=0, m_{l}$ must be 0 .
c) The orbital quantum number(l) must be positive integers or zero.

