Chem 1104 - 2018 Summer Problem Set #7

- 1. Calculate the wavelength in meters of electromagnetic radiation with a frequency of 5.5×10^{15} Hz.
- 2. The photoelectric effect consists of the emission of electrons from the surface of a metal when the metal is exposed to light. A photon with a minimum energy of 3.87×10^{-19} J is necessary to eject an electron from the metal barium. a) What frequency and wavelength(in nanometers) corresponds to this value? b) Will blue light with a wavelength of 450 nm work?
- 3. a) What is the de Broglie wavelength (in meters) of a baseball weighing 145 g and travelling at 156 km/h(must convert to m/s)?
- b) Calculate the mass(in mg) of a flying mosquito with a de Broglie wavelength of 3.10×10^{-31} m and speed of 1.38 m/s?
- 4. a) What is the wavelength (in nanometers) of electromagnetic radiation which corresponds to the transition from the n = 6 level to the n = 1 level in the hydrogen atom?
- b) A hydrogen atom emits electromagnetic radiation with a wavelength of 434.0 nm when an electron moves from an outer energy level to the n=2 level. What energy level is the electron initally located?
- 5. a) Calculate the uncertainty in the velocity of a 1.00 g particle if the uncertainty in the position is 0.0100 nm.
- b) Calculate the uncertainty in the position of a proton(mass = 1.67×10^{-24} g) if the uncertainty in the velocity of the proton is 1.00 m/s.
- 6. Write the electron configuration for the following atoms and ions using both the complete notation and shorthand notation. a) Ba; b) Pb; c) Nb²⁺; d) Xe; e) Lu⁺
- 7. State the number of unpaired electrons for each of the species in Question #6 and determine if they are paramagnetic or diamagnetic.
- 8. State the orbital that corresponds to the following quantum numbers:

a)
$$n = 2, 1 = 1, m_1 = 1$$
; b) $n = 4, 1 = 3, m_1 = -2$; c) $n = 3, 1 = 2, m_1 = -1$; d) $n = 5, 1 = 1, m_1 = 1$

- 9. Why can't an electron have the following quantum numbers?
- a) n = 2, l = 2, $m_l = 1$; b) n = 3, l = 0, $m_l = 3$; c) n = 5, l = -2, $m_l = 1$

Answer Set for Chem 1104-2018 Summer Problem Set #7

1.
$$\lambda = 5.5 \times 10^{-8} \,\mathrm{m}$$

2.a)
$$v = 5.99 \times 10^{14} \text{ Hz}$$
, $\lambda = 500 \text{ nm}$; b) yes

3.a)
$$\lambda = 1.06 \times 10^{-34}$$
 m; b) mosquito weighs 1.55 mg.

4.a)
$$\lambda = 93.75$$
 nm; b) $n = 5$.

6. Full notation:

c)
$$Nb^{2+}$$
: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^1$

d) Xe:
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6$$

e)
$$Lu^+$$
: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14}$

Shorthand Notation:

c)
$$Nb^{2+}$$
: [Kr] $5s^2 4d^1$

d) Xe:
$$[Kr] 5s^2 4d^{10} 5p^6$$

7.

9. a) 1 can not exceed n-1. For
$$n = 2, 1 = 0, 1$$
.

b) For
$$l = 0$$
, m_l must be 0.