Chem 1104-2018 Summer Problem Set \#5

1. The specific heat of silver is $0.235 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. How many joules of heat are required to heat a 75 g silver spoon from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$?
2. At body temperature it requires 2404 joules to evaporate 1 g of water. After vigorous exercise a person feels chilly because their body is giving up heat to evaporate the perspiration. A typical person perspires 25 g of water after 20 minutes of exercise. How much body heat is this person using to evaporate this water?
3. If 325 g of water at $4.2^{\circ} \mathrm{C}$ absorbs 12.28 kJ , then what is the final temperature of the water?
4. The combustion of butane produces heat according to the equation:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-5314 \mathrm{~kJ}
$$

How many grams of butane must be burned to release 6375 kJ of heat?
5. Glycine $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}$ is important for biological energy. The combustion of glycine is given by the equation,

$$
4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}(\mathrm{~s})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{~N}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ} \mathrm{rxn}=-3857 \mathrm{~kJ}
$$

Given that $\quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$.

$$
\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{O}_{2}(\mathrm{~g})\right]=\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{N}_{2}(\mathrm{~g})\right]=0 \mathrm{~kJ} / \mathrm{mole}
$$

Calculate the enthalpy of formation $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}$ per mole of glycine.
6. Using Hess's Law calculate the enthalpy change for the reaction:

$$
\mathrm{C}(\text { graph })+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=?
$$

Given the following information:

$$
\begin{aligned}
& \mathrm{C}(\mathrm{graph})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-393.5 \mathrm{~kJ} . \\
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}^{\circ}=-285.8 \mathrm{~kJ} . \\
& \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-726.4 \mathrm{~kJ}
\end{aligned}
$$

7. A 0.1326 g sample of magnesium was burned in an oxygen bomb calorimeter. The total heat capacity of the calorimeter plus water was $5760 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. If the temperature rise of the calorimeter with water was $0.570^{\circ} \mathrm{C}$, calculate the change in internal energy and the enthalpy of combustion of magnesium. Note: Assume the temperature is about $25^{\circ} \mathrm{C}$.

$$
\mathrm{Mg}(\mathrm{~s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{~s})
$$

8. a) The combustion of 1.00 mol of glucose liberates 2820 kJ of heat. When 1.25 g of glucose was combusted in a calorimeter containing 950 g of water a temperature rise of $3.15^{\circ} \mathrm{C}$ was observed. What is the heat capacity of the bomb calorimeter?
b) When 2.02 g of an unknown substance is combusted in the same calorimeter, under the same conditions, a temperature change of $6.86^{\circ} \mathrm{C}$ is observed. Calculate the heat of combustion of this unknown substance in kJ / g.

Answer Set for Chem 1104-2018 Summer Problem Set \#5

1. 260 J
2. 60, 100 J
3. $13.2^{\circ} \mathrm{C}$
4. 139 g
5. $-537.2 \mathrm{~kJ} / \mathrm{mol}$
6. -238.7 kJ
7. $\mathrm{q}=\Delta \mathrm{E}=-3.28 \mathrm{~kJ}=-602 \mathrm{~kJ} / \mathrm{mole} ; \Delta \mathrm{H}=-4.52 \mathrm{~kJ}=-828 \mathrm{~kJ} / \mathrm{mole}$
8.a) $\mathrm{C}_{\mathrm{cal}}=6.22 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$; b) $21.1 \mathrm{~kJ} / \mathrm{g}$
