Chem 1104-2018 Summer Problem Set \#4

1. The pressure needed to make synthetic diamonds from graphite is $80,000 \mathrm{~atm}$. Convert this pressure to a) kilobars, b) pascals, c) torr, d) cm Hg
2. Determine the final pressure when a) 1.0 mL of krypton at 105 kPa is transferred to a 1.0 L vessel; b) $30.0 \mathrm{~cm}^{3}$ of $\mathrm{O}_{2}(\mathrm{~g})$ at 600 . Torr is compressed to $5.0 \mathrm{~cm}^{3}$. Assume constant temperature.
3. A chemist had prepared a sample of hydrogen bromide and found it occupied 255 mL at $85^{\circ} \mathrm{C}$ and 600 Torr.a) What volume would it occupy at $0.00^{\circ} \mathrm{C}$ at the same pressure? b) What volume would it occupy at STP?
4.a) A $100 . \mathrm{mL}$ flask contains argon at 1.3 atm and $77^{\circ} \mathrm{C}$. What amount of Ar is present(in grams)?
b) A $120 . \mathrm{mL}$ flask contains $2.7 \mu \mathrm{~g}$ of O_{2} at $17^{\circ} \mathrm{C}$. What is the pressure in Torr?
c) A 16.7 g sample of krypton exerts a pressure of 100 . mTorr at $44^{\circ} \mathrm{C}$. What is the volume of the container in litres?
d) A $6000 . \mathrm{m}^{3}$ storage tank contains methane at 129 kPa and $15^{\circ} \mathrm{C}$. What amount of CH_{4} is present in kilograms?
4. Record the volume of a room in your home. Calculate the total number of gas molecules that are present in that room under normal ambient conditions of 728 mm Hg atm and $74^{\circ} \mathrm{F}$. Assume the volume occupied by furniture and other items is negligible.
5. Nitroglycerin is a shock sensitive liquid that detonates by the reaction

$$
4 \mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{l}) \rightarrow 6 \mathrm{~N}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+12 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Calculate the total volume of product gases at $150 . \mathrm{kPa}$ and $100 .{ }^{\circ} \mathrm{C}$ from the detonation of 1.00 g of nitroglycerin.
7. Urea, $\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$, is used as a fertilizer and is made by the reaction of ammonia and carbon dioxide:

$$
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What volumes of CO_{2} and NH_{3} at 200. atm and $450^{\circ} \mathrm{C}$ are needed to produce 2.50 kg of urea?
8. A sample of gas with a mass of 21.3 g is confined to a vessel of volume 7.73 L at 0.880 atm and $30^{\circ} \mathrm{C}$. a) What is the molar mass of the gas? b) What is the density of the gas at 1.00 atm and 298 K.
9. Calculate the partial pressure of each gas and the total pressure of the following mixtures, each of which occupies a $500 . \mathrm{mL}$ vessel at $0.00^{\circ} \mathrm{C}$. a) $0.020 \mathrm{~mol}_{2}$ and 2.33 g of O_{2}, b) 0.015 mol $\mathrm{H}_{2}, 4.22 \mathrm{mg}$ of He , and $0.030 \mathrm{~mol} \mathrm{NH}_{3}$.
10. Calculate the rms speeds of a) H_{2} molecules at $0^{\circ} \mathrm{C}$; b) Xe atoms at $25^{\circ} \mathrm{C}$.

Answer Set for Chem 1104-2018 Summer Problem Set \#4

1.a) 80 kbar , b) $8.1 \times 10^{9} \mathrm{~Pa}$, c) 6.1×10^{7} Torr, d) $6.1 \times 10^{6} \mathrm{~cm} \mathrm{Hg}$
2.a) $1.0 \times 10^{2} \mathrm{~Pa}$; b) 3600 Torr
3.a) 194 mL , b) 154 mL
4.a) 0.180 g Ar, b) 1.3×10^{-2} Torr, c) $3.94 \times 10^{4} \mathrm{~L}$, d) 5190 kg
5. Answers will vary depending on the volume. Convert the volume to liters, pressure to 0.958 atm and the temperature to 296 K . Use the ideal gas law.
6. $V=0.660 \mathrm{~L}$
7. $12.3 \mathrm{~L} \mathrm{CO}_{2}, 24.7 \mathrm{~L} \mathrm{NH}_{3}$
8.a) $77.9 \mathrm{~g} / \mathrm{mole}$, b) $3.18 \mathrm{~g} / \mathrm{L}$
9.a) $0.90 \mathrm{~atm} \mathrm{~N}_{2}, 3.26 \mathrm{~atm} \mathrm{O}_{2}, 4.16 \mathrm{~atm}$ total; b) $0.67 \mathrm{~atm}_{2}, 1.3 \mathrm{~atm} \mathrm{NH}_{3}, 0.047 \mathrm{~atm} \mathrm{He}, 2.0$ atm total.
10.a) $1.84 \times 10^{3} \mathrm{~m} / \mathrm{s}$, b) $238 \mathrm{~m} / \mathrm{s}$

