Student Number:

1. Convert the following:
a) 42.5 g of SO_{3} into moles Note: 1 mole $\mathrm{SO}_{3}=64.07 \mathrm{~g} \mathrm{SO}_{3}=6.022 \times 10^{23} \mathrm{SO}_{3}$ molecules
b) $42.5 \mathrm{~g} \mathrm{SO}_{3}$ into number of SO_{3} molecules:
c) $4.00 \times 10^{24} \mathrm{SO}_{3}$ molecules into mass(g):
2.a) Determine the molarity of a solution prepared by dissolving 12.5 g of NaOH into 250.00 mL of water.

$$
\begin{aligned}
& \text { Molar Mass of } \mathrm{NaOH}=40.0 \mathrm{~g} / \mathrm{mole} \\
& \qquad 1 \mathrm{~L}=1000 \mathrm{~mL}
\end{aligned}
$$

b) A student wished to prepare $300 . \mathrm{mL}$ of a 0.200 M HCl solution using the 12.0 M HCl stock solution provided. How much of the stock solution is needed for this dilution?

$$
\mathrm{M}_{1} \times \mathrm{V}_{1}=\mathrm{M}_{2} \times \mathrm{V}_{2}
$$

3. Given the reaction below:

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{AlI}_{3}(\mathrm{~s})
$$

Molar Mass of $\mathrm{Al}=26.98 \mathrm{~g} / \mathrm{mole}$ Molar Mass of $\mathrm{I}_{2}=253.80 \mathrm{~g} / \mathrm{mole}$
Molar Mass of $\mathrm{AlI}_{3}=407.70 \mathrm{~g} / \mathrm{mole}$
If this reaction is performed using $81.0 \mathrm{~g} \mathrm{Al}(\mathrm{s})$ and 1070 g of $\mathrm{I}_{2}(\mathrm{~s})$:
a) Determine the limiting reagent.
b) Calculate the mass if $\mathrm{AlI}_{3}(\mathrm{~s})$ that should be produced.
c) If $860 . \mathrm{g}$ of $\mathrm{AlI}_{3}(\mathrm{~s})$ is actually produced, calculate the percent yield.

Answer Set for CHEM 1104 TEST\#2

1.a) 0.663 moles ; b) 4.00×10^{23} molecules; c) 426 . g; 2 pt
2.a) $1.25 \mathrm{M} ; 2 \mathrm{pt}$
b) $5.00 \mathrm{~mL} ; 1 \mathrm{pt}$
3.a) I_{2}; b) 1150 g ; c) 75.0%; 5 pt

