Thermodynamics:

- Study of energy changes that accompany physical and chemical changes.
- First Law of Thermodynamics: Energy is niether created nor destroyed but simply converted from one form to another.
- **E: internal energy of a system. State function.**
- ΔE : change in internal energy.

- **∆E:** change in internal energy. Energy enters a system as heat(q) and/or work(w).
- Consider a system with an initial amount of energy E_i . If it absorbs some heat and then has work done on it.

$$E_{f} = E_{i} + q + w$$
$$\Delta E = E_{f} - E_{i}$$
$$\Delta E = q + w$$

q = heat w = work

$\Delta \mathbf{E} = \mathbf{q} + \mathbf{w}$

- $\Delta E = E_f E_i$ q = heat w = work
- q +# heat absorbed by system-# heat given off by system
- w +# work done on the system-# work done by the system
- ΔE +# energy enters the system-# energy leaves the system

Ex:

A gas while expanding absorbs 25 J of heat and does 243 J of work. Calculate ΔE .

Pressure-Volume Work:

$\mathbf{W} = -\mathbf{P}\Delta\mathbf{V} \qquad \qquad \mathbf{1} \mathbf{L} \cdot \mathbf{atm} = \mathbf{101.3} \mathbf{J}$

Ex:

A gas expands from 1.00 L to 5.00 L against a constant pressure of 1.00 atm, calculate the work done by the gas.

Constant Volume Process $\Delta E = q_v$ q_v : heat evolved or absorbed during a constant volume process.

Constant Pressure Process $\Delta H = q_p$ q_p : heat evolved or absorbed during a constant pressure process.

For reactions involving gases, changes in volume are significant.

$\Delta \mathbf{H} = \Delta \mathbf{E} + (\Delta \mathbf{n}) \mathbf{R} \mathbf{T}$

 $\Delta n = moles gas product - moles gas react R: 8.314 J/K·mole$

T: temperature in Kelvins

Ex:

A sample of quinone, $C_6H_4O_2(s)$, is combusted in a bomb calorimeter(constant volume) with a heat capacity of 7.45 kJ/°C and produced a temperature increase of 4.00 °C. What is q, ΔH , & $\Delta E(at 25°C)$?

 $C_6H_4O_2(s) + 6O_2(g) \rightarrow 6CO_2(g) + 2H_2O(g)$

Thermodynamics continued: First Law of Thermodynamics:

- Total energy of the universe is constant.
- **Energy is neither created or destroyed.**
- E constant for an isolated system.

Spontaneous Processes and Entropy:

Spontaneous process is a process which has a tendency to occur without external influence. Ex: Mixing of gas molecules.

- Spontaneous processes were originally thought to be exothermic processes. Not so!
- Ex: Combustion of natural gas. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ $\Delta H = -890 \text{ kJ}$
- Endothermic process are also spontaneous: $H_2O(s) \rightarrow H_2O(l) \Delta H = +6.0 \text{ kJ}$
- Spontaneous reactions occur because matter and energy tend to become more disordered.

Entropy:

$\frac{\text{Entropy}(S)}{\text{related to the degree of disorder.}}$ $\text{Can not measure S directly. Can measure } \Delta S.$ $\Delta S = S_{\text{FINAL}} - S_{\text{INITIAL}}$

- + Δ S: system becoming more disordered. - Δ S: system becoming less disordered or more organized.
- Ex:

Solid \rightarrow Liquid $\Delta S = +$ System is becoming less ordered.

Entropy cont...

<u>Second Law of Thermodynamics</u> – In any spontaneous process there is always an increase in the entropy of the universe.

For a spontaneous process $\Delta S_{universe} > 0$. Where $\Delta S_{universe} = \Delta S_{SYS} + \Delta S_{SUR}$

 ΔS_{SYS} : entropy change for the system. ΔS_{SUR} : entropy change for the surroundings

Spontaneity is Temperature Dependant:

For a spontaneous process $\Delta S_{universe} > 0$.

$\Delta S_{universe} = \Delta S_{SYS} + \Delta S_{SUR}$ Consider a system of Liquid Water:

Quantifying ΔS

$$\Delta S = \frac{q_{rev}}{T}$$

q_{rev}: Heat changes for a reversible process. Process that can be reversed in direction by a small change in a system property.

T: temperature in Kelvin

Entropy:

Assuming a constant pressure. $\Delta H = q$

$$\Delta S \equiv \frac{4H}{T}$$

T: temperature in Kelvin

ΔS has units of kJ/K or J/K.

Entropy cont...

<u>Third Law of Thermodynamics</u> – The entropy for a pure perfect crystal is zero at absolute zero(O K).

Ex:

Calculate the change in entropy for the melting of ice at 0 °C.

 $H_2O(s) \rightarrow H_2O(l) \Delta H = +6.0 \text{ kJ}$

To determine if a process is spontaneous, can not measure $\Delta S_{universe}$ and ΔS_{SUR} .

$\Delta S_{\text{universe}} = \Delta S_{\text{SUR}} + \Delta S_{\text{SYS}}$

Multiply by T.

$\mathbf{T} \cdot \Delta \mathbf{S}_{\text{universe}} = \mathbf{T} \cdot \Delta \mathbf{S}_{\text{SUR}} + \mathbf{T} \cdot \Delta \mathbf{S}_{\text{SYS}}$

$$\mathbf{T} \cdot \Delta \mathbf{S}_{\text{universe}} = \mathbf{A} \mathbf{H}_{\mathbf{SUR}} + \mathbf{H}_{\mathbf{S$$

Since $\Delta H_{SUR} = - \Delta H_{SYS}$

Gibbs Free Energy(G):

G = H - TSsince we measure change $\Delta G = \Delta H - T\Delta S$

 $\Delta G < 0$: process is spontaneous $\Delta G > 0$: process is not spontaneous $\Delta G = 0$: process is at equilibrium

Gibbs Free Energy(G):

Ex:

Calculate the change in Gibbs free energy for the melting of ice if ΔH = +6.0 kJ and ΔS = +22. J/K at 0.0°C.

$H_2O(s) \rightarrow H_2O(l)$

ΔG Temperature Dependant:

For $\Delta G = \Delta H - T \Delta S$

ΔG	ΔH	ΔS	Spontaneous
-	-	+	All temps.
- or +	-	-	Low temps.
+	+	-	Not sponts.
- or +	÷	+	High temps.

$\Delta G \text{ cont...:}$

Ex:

Consider the following process $H_2O(l) \rightarrow H_2O(g)$

where $\Delta H = +44.0 \text{ kJ}$ and $\Delta S = +118 \text{ J/K}$

Calculate ∆G at 90 °C, 100 °C, and 110 °C.

Standard Gibbs Free Energy Change(ΔG°):

"" Indicates standard conditions (1 atm and 25°C)

Can determine ΔG° from ΔH° and ΔS° . $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

Standard Entropies:

Similar method used for ΔS° . $\Delta S^{\circ} = \Sigma \Delta S^{\circ}(\text{prods}) - \Sigma \Delta S^{\circ}(\text{reacts})$

Ex: Calculate ΔS° for the following: $N_2O_4(g) \rightarrow 2NO_2(g) \quad \Delta S^{\circ} = ?$ Given:

Compound	ΔS°(J/K·mole)
$N_2O_4(g)$	+304.2
$NO_2(g)$	+240.0

Calculating ΔG° :

Ex: Calculate ΔG° for the following: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \Delta G^{\circ} = ?$

Given:

<u>Reagent</u>	ΔH _f ° (kJ/mole)	ΔS° (J/K·mole)
N ₂ (g)	0	+191.5
H ₂ (g)	0	+130.68
NH ₃ (g)	-46.11	+192.3

Standard Free Energies of Formation:

Similar method can be used for ΔG° .

$\Delta G^{\circ} = \Sigma \Delta G_{f}^{\circ}(prod) - \Sigma \Delta G_{f}^{\circ}(reacts)$

Relationship between ΔG and ΔG° :

$\Delta \mathbf{G} = \Delta \mathbf{G}^{\circ} + \mathbf{RTInQ}$

- R: Gas Constant(8.314 J/K·mole)
- **T: temperature in Kelvin**
- Q: reaction quotient

 $Q = \frac{[products]}{[reactants]}$

$\Delta G^{\circ} \text{ cont...}$

Ex:

Calculate ΔG for the following $CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$

at 25 °C if ΔG° = -29.0 kJ and p(CO) is 5.0 atm and p(H₂) is 3.0 atm.

<u>ΔG and Equilibrium:</u>

For systems at equilibrium

$\Delta \mathbf{G}^{\circ} = -\mathbf{R}\mathbf{T}\mathbf{I}\mathbf{n}\mathbf{K}$

Can now determine the equilibrium constant from ΔG° .