Thermodynamics:

Study of energy changes that accompany physical and chemical changes.

First Law of Thermodynamics:
Energy is niether created nor destroyed but simply converted from one form to another.

E: internal energy of a system. State function.
ΔE : change in internal energy.
ΔE : change in internal energy. Energy enters a system as heat(q) and/or work(w). Consider a system with an initial amount of energy E_{i}. If it absorbs some heat and then has work done on it.

$$
\begin{gathered}
\mathbf{E}_{f}=\mathbf{E}_{i}+\mathbf{q}+\mathbf{w} \\
\Delta \mathbf{E}=\mathbf{E}_{\mathrm{f}}-\mathbf{E}_{\mathbf{i}} \\
\Delta \mathbf{E}=\mathbf{q}+\mathbf{w} \\
\mathbf{q}=\text { heat } \quad \mathbf{w}=\text { work }
\end{gathered}
$$

$\Delta \mathbf{E}=\mathbf{q}+\mathbf{w}$

$\Delta E=E_{f}-E_{i} \quad q=$ heat $\quad w=$ work
q +\# heat absorbed by system -\# heat given off by system
w +\# work done on the system -\# work done by the system
$\Delta \mathrm{E}+\#$ energy enters the system -\# energy leaves the system

Ex:

A gas while expanding absorbs 25 J of heat and does 243 J of work. Calculate $\Delta \mathrm{E}$.

Pressure-Volume Work:

$$
W=-P \Delta V
$$

$1 \mathrm{~L} \cdot \mathbf{a t m}=101.3 \mathrm{~J}$

Ex:

A gas expands from 1.00 L to 5.00 L against a constant pressure of 1.00 atm , calculate the work done by the gas.

Constant Volume Process

$\Delta \mathbf{E}=\mathbf{q}_{\mathbf{v}}$
q_{v} : heat evolved or absorbed during a constant volume process.

Constant Pressure Process
$\Delta \mathbf{H}=\mathbf{q}_{\mathrm{p}}$
q_{p} : heat evolved or absorbed during a constant pressure process.

For reactions involving gases, changes in volume are significant.

$\Delta H=\Delta E+(\Delta n) R T$

$\Delta \mathrm{n}=$ moles gas product - moles gas react
R: $8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mole}$
T: temperature in Kelvins

Ex:

A sample of quinone, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{~s})$, is combusted in a bomb calorimeter(constant volume) with a heat capacity of $7.45 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$ and produced a temperature increase of $4.00{ }^{\circ} \mathrm{C}$. What is q , $\Delta H, \& \Delta E\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right) ?$

$$
\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Thermodynamics continued: First Law of Thermodynamics:

Total energy of the universe is constant.
Energy is neither created or destroyed.
E constant for an isolated system.

Spontaneous Processes and Entropy:

Spontaneous process is a process which has a tendency to occur without external influence. Ex: Mixing of gas molecules.

Spontaneous processes were originally thought to be exothermic processes. Not so!
Ex: Combustion of natural gas.

$$
\begin{array}{r}
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\Delta \mathrm{H}=-890 \mathrm{~kJ}
\end{array}
$$

Endothermic process are also spontaneous:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}=+6.0 \mathrm{~kJ}$
Spontaneous reactions occur because matter and energy tend to become more disordered.

Entropy:

Entropy(S) - Thermodynamic property related to the degree of disorder. Can not measure S directly. Can measure ΔS.

$$
\Delta S=S_{\text {Final }}-\mathbf{S}_{\text {INITIAL }}
$$

$+\Delta S$: system becoming more disordered. $-\Delta S$: system becoming less disordered or more organized.
Ex:

$$
\text { Solid } \rightarrow \text { Liquid } \quad \Delta S=+
$$

System is becoming less ordered.

Entropy cont...

Second Law of Thermodynamics - In any

 spontaneous process there is always an increase in the entropy of the universe.For a spontaneous process
$\Delta S_{\text {universe }}>0$. Where

$\Delta \mathrm{S}_{\mathrm{SYS}}$: entropy change for the system. $\Delta S_{\text {SUR }}$: entropy change for the surroundings

Spontaneity is Temperature Dependant:

For a spontaneous process $\Delta S_{\text {universe }}>0$.

$\Delta S_{\text {universe }}=\Delta S_{S Y S}+\Delta S_{\text {SUR }}$

Consider a system of Liquid Water:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$-\Delta \mathbf{S}_{\text {SURR }}$

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O} \\
+\Delta \mathrm{S}_{\mathrm{SYS}}
\end{gathered}
$$

Quantifying $\Delta \mathbf{S}$

$$
\Delta \mathrm{S}=\frac{\mathrm{q}_{\mathrm{rev}}}{\mathrm{~T}}
$$

$\mathbf{q}_{\mathrm{rev}}$: Heat changes for a reversible process. Process that can be reversed in direction by a small change in a system property.

T: temperature in Kelvin

Entropy:

Assuming a constant pressure. $\Delta \mathbf{H}=\mathbf{q}$

$$
\Delta S \equiv \frac{q \mathrm{H}}{T}
$$

T: temperature in Kelvin
ΔS has units of kJ / K or J / K.

Entropy cont...

Third Law of Thermodynamics - The

 entropy for a pure perfect crystal is zero at absolute zero(O K).
Ex:

Calculate the change in entropy for the melting of ice at $0{ }^{\circ} \mathrm{C}$.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}=+6.0 \mathrm{~kJ}
$$

To determine if a process is spont
not measure $\Delta S_{\text {universe }}$ and $\Delta S_{\text {SUR }}$.

$\Delta S_{\text {universe }}=\Delta S_{S U R}+\Delta S_{S Y S}$

Multiply by T.

$$
T \cdot \Delta S_{\text {universe }}=T \cdot \Delta S_{S U R}+T \cdot \Delta S_{S Y S}
$$

Since

$$
\Delta \mathrm{S}=\frac{\Delta \mathrm{H}}{\mathrm{~T}}
$$

$$
\text { Then } \Delta H_{\text {SUR }}=T \cdot \Delta S_{\text {SUR }}
$$

Since $\Delta H_{S U R}=-\Delta H_{S Y S}$

Gibbs Free Energy(G):

$$
\mathbf{G}=\mathbf{H}-\mathbf{T S}
$$

since we measure change

$$
\Delta \mathbf{G}=\Delta \mathbf{H}-\mathbf{T} \Delta \mathbf{S}
$$

$\Delta \mathrm{G}<0$: process is spontaneous $\Delta G>0$: process is not spontaneous $\Delta \mathbf{G}=0$: process is at equilibrium

Gibbs Free Energy(G):

Ex:

Calculate the change in Gibbs free energy for the melting of ice if $\Delta H=+6.0 \mathrm{~kJ}$ and $\Delta \mathrm{S}=$ $+22 . \mathrm{J} / \mathrm{K}$ at $0.0^{\circ} \mathrm{C}$.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$\Delta \mathbf{G}$ Temperature Dependant:

$\Delta \mathbf{G}=\Delta \mathbf{H}-\mathbf{T} \Delta \mathbf{S}$

$\Delta \mathrm{G}$	$\Delta \mathrm{H}$	$\Delta \mathrm{S}$	Spontaneous
-	-	+	All temps.
- or +	-	-	Low temps.
+	+	-	Not sponts.
- or +	+	+	High temps.

ΔG cont...:

Ex:
Consider the following process

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

where $\Delta H=+\mathbf{4 4 . 0} \mathrm{kJ}$ and $\Delta S=+\mathbf{1 1 8} \mathrm{J} / \mathrm{K}$

Calculate $\Delta \mathrm{G}$ at $90^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$, and $110{ }^{\circ} \mathrm{C}$.

Standard Gibbs Free Energy

 Change($\Delta \mathbf{G}^{\circ}$):"o" Indicates standard conditions (1 atm and $25^{\circ} \mathrm{C}$)

Can determine $\Delta \mathbf{G}^{\circ}$ from ΔH° and ΔS°.

$$
\Delta \mathbf{G}^{\circ}=\Delta \mathbf{H}^{\circ}-\mathbf{T} \Delta \mathbf{S}^{\circ}
$$

Standard Entropies:

Similar method used for $\Delta \mathbf{S}^{\circ}$.
$\Delta \mathbf{S}^{\circ}=\Sigma \Delta \mathbf{S}^{\circ}($ prods $)-\Sigma \Delta \mathbf{S}^{\circ}($ reacts $)$

Ex: Calculate ΔS° for the following:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{S}^{\circ}=?
$$

Given:

Compound
 $\Delta \mathbf{S}^{\circ}(\mathbf{J} / \mathrm{K} \cdot \mathrm{mole})$

$$
\begin{array}{ll}
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) & \mathbf{+ 3 0 4 . 2} \\
\mathrm{NO}_{2}(\mathrm{~g}) & \mathbf{+ 2 4 0 . 0}
\end{array}
$$

Calculating ΔG° :

Ex: Calculate $\Delta \mathbf{G}^{0}$ for the following:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta \mathrm{G}^{\circ}=?
$$

Given:

Reagent

$\Delta \mathbf{H}_{\mathrm{f}}{ }^{\circ}$ (kJ/mole)

0
$\mathbf{N}_{2}(\mathrm{~g})$
$\mathrm{H}_{2}(\mathrm{~g})$
0
$\mathbf{N H}_{3}(\mathrm{~g})$
-46.11
+130.68
$\Delta \mathbf{S}^{\circ}$
(J/K•mole)
+191.5
$+192.3$

Standard Free Energies of Formation:

Similar method can be used for ΔG°.

$\Delta \mathbf{G}^{\circ}=\Sigma \Delta \mathbf{G}_{\mathrm{f}}{ }^{\circ}($ prod $)-\Sigma \Delta \mathbf{G}_{\mathrm{f}}{ }^{\circ}($ reacts $)$

Relationship between ΔG and $\Delta G^{\circ}:$

$\Delta G=\Delta G^{\circ}+$ RTInQ

R: Gas Constant(8.314 J/K•mole)
T: temperature in Kelvin
Q: reaction quotient

$$
\mathrm{Q}=\frac{[\text { products }]}{[\text { reactants }]}
$$

ΔG° cont...

Ex:

Calculate $\Delta \mathbf{G}$ for the following

 $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ if $\Delta \mathrm{G}^{\circ}=-\mathbf{2 9 . 0} \mathrm{kJ}$ and $p(\mathrm{CO})$ is 5.0 atm and $\mathrm{p}\left(\mathrm{H}_{2}\right)$ is 3.0 atm .
$\Delta \mathbf{G}$ and Equilibrium:

For systems at equilibrium

$$
\Delta G^{\circ}=-R T I n K
$$

Can now determine the equilibrium constant from $\Delta \mathbf{G}^{\circ}$.

