Chemistry 1104 Introduction:

- Time requirements. Start early.
- Need help. See instructor early and often. Only requirement: be prepared.
- Understanding vs. memorization.
- Chemistry requires practice. Use problem sets, textbooks, website.

Chemistry 1104 Introduction cont..:

- Must achieve 50% on theory (40 pt/80 pt) to pass course.
- Must achieve 50% on lab(10 pt/20 pt) to pass course.
- Lab important. Need lab to pass course. Miss 3 labs and very likely to fail course. If completed lab component within last year do not have to repeat lab. See lab instructor. - Minitests taken during class. Dates for midterm and exam.

Dimensional Analysis:

Mathematical method used in basic calculations and converting from one set of units to another.

Ex:1 How many eggs are in 2 dozen?

$$
1 \text { dozen = } 12 \text { eggs }
$$

Ex:2 If a crate holds 20 dozen, how many eggs are in 8 crates?

1 dozen = 12 eggs
1 crate $=20$ dozen

Dimensional Analysis cont..:

Ex:3 How many centimeters are in 5.00 in?

$1.00 \mathrm{in}=2.54 \mathrm{~cm}$

CHEMISTRY

The study of matter and the changes that can occur.

Matter - Anything that hass mass and occupies space.
Substance - Matter that has a constant composition and distinct properties.

Mixture - Combination of two or more substances.

Chemistry cont...

Element- Substance that cannot be broken up into simpler substances by chemical means.

Compound - Substance composed of two or more elements united in fixed proportions.

Homogeneous mixture - Composition the same throughout.

Heterogeneous mixture - Nonuniform composition.

Measurement:

- Mass
gram
meter
second
kelvin
mole
mol substance
- volume
litre $\quad \mathbf{L}$

Measurement and Prefixes:

Prefix	Symbol	Multiple
kilo	\mathbf{k}	$\mathbf{1 0 0 0}$
deci	\mathbf{d}	0.1
centi	\mathbf{c}	$\mathbf{0 . 0 1}$
milli	m	0.001
micro	$\boldsymbol{\mu}$	1×10^{-6}
nano	n	$1 \times \mathbf{1 0}^{-9}$

Temperature:

Familiar with Celsius and Fahrenheit scales.

Kelvin Scale:

Invented by Lord Kelvin. Goes from absolute zero(0 K) to infinity.

$$
K={ }^{\circ} \mathrm{C}+273.15
$$

Ex: Convert $25^{\circ} \mathrm{C}$ to Kelvin.

Rules For Determining the

 Number of Significant Figures:1. All numbers greater than zero are significant.

Number	\# Sig Figs
14.2	3
1218	4
2	1

Sig. Figs cont..

2. Zeros between non-zero numbers are significant.

Sig. Figs cont..

3. Zeros used to locate decimal places and to the left of non-zero digits are not significant.

Number	\# Sig Figs
0.005	1
0.0211	3
0.7	1

Sig. Figs cont..

4. All zeros to the right of a non-zero digit containing a decimal are significant.

Number	\# Sig Figs
$\mathbf{0 . 0 0 5 0 1}$	3
10.010	5
12.001	5

Sig. Figs. cont...

5. Zeros to the right of a non-zero digit containing no decimal are not significant. Ex: 400 contains one significant figure. If 400 contains 2 or $\mathbf{3}$ significant figures it can be indicated as follows:

400 or $\mathbf{4 . 0 \times 1 0 ^ { 2 }}$ for 2 significant figures
400 or 4.00×10^{2} for 3 significant figs

Sig. Figs cont..

6. Exact values such as definate values and counting numbers $(1,2,3$, etc.) have an infinite number of significant figures. Ex: $1 \mathrm{~L}=\mathbf{1 0 0 0} \mathbf{~ m L}$, the number $\mathbf{1 0 0 0}$ has an infinite number of significant figures.

Rounding Significant Figures:

1. If the first unwanted digit is less than five, discard all unwanted digits and leave all wanted digits alone.
Ex: If $\mathbf{3 . 7 2 4 7}$ is rounded to $\mathbf{3}$ significant figures, the result is 3.72
2. If the first unwanted digit is greater than five, discard all unwanted digits and increase the last wanted figure by one. Ex: If $\mathbf{8 . 5 6 4 7 3}$ is rounded to $\mathbf{4}$ significant figures, the result is 8.565

Rounding Significant Figures cont.:

3. If the first unwanted figure is a five with non-zero digits after it; drop the 5 and increase the last wanted figure by one. If the first unwanted figure is a five with no other figures or only zeros; drop the 5 and leave alone the last wanted figure.
Ex1: If 8.250 is rounded to 2 significant figures, the result: $\mathbf{8 . 2}$

Ex2: If $\mathbf{7 . 1 0 5 0 1}$ is rounded to 3 significant figures, the result: 7.11

Calculations Using Significant Figures:

- Addition/Subtraction:

- The result of the calculation must be rounded off to the same number of decimal places as the term used in the problem with the least number of decimal places.

Ex: 161.032

$5.6 \lessdot$ contains one digit after +32.4524 decimal 199.0844 calculator round to 199.1

Calculations Using Significant

Figures cont..:

- Multiplication/Division:
- The result of the calculation must contain the same number of significant figures as the term used in the calculation with the least number of significant figures.

Ex: $\quad 152.06 \Leftarrow$ contains 5 significant $\underline{\times 0.24} \Leftarrow$ contains 2 significant 36.4944 must be rounded to 36

Scientific Notation:

Used to express very large and very small numbers. For significant figures only consider numbers before $\times 10^{\text {exp }}$.

Number	Equivalent	Sci Notation
55	5.5×10	$5.5 \times \mathbf{1 0}^{1}$
555	$5.55 \times 10 \times 10$	$5.55 \times \mathbf{1 0}^{\mathbf{2}}$
5555	$5.555 \times 10 \times 10 \times 10$	$5.555 \times \mathbf{1 0}^{3}$
0.55	$5.5 \times 1 / 10$	$5.5 \times \mathbf{1 0}^{-1}$
0.055	$5.5 \times 1 / 10 \times 1 / 10$	5.5×10^{-2}

