Chemistry 1104 Introduction:

- Time requirements. Start early.
- Need help. See instructor early and often. Only requirement: be prepared.
- Understanding vs. memorization.
- Chemistry requires practice. Use problem sets, textbooks, website.

Chemistry 1104 Introduction cont..:

- Must achieve 50% on theory(40 pt/80 pt) to pass course.
- Must achieve 50% on lab(10 pt/20 pt) to pass course.
- Lab important. Need lab to pass course. Miss 3 labs and very likely to fail course. If completed lab component within last year do not have to repeat lab. See lab instructor.
- Minitests taken during class. Dates for midterm and exam.

Dimensional Analysis:

- Mathematical method used in basic calculations and converting from one
- set of units to another.
- Ex:1 How many eggs are in 2 dozen? 1 dozen = 12 eggs
- Ex:2 If a crate holds 20 dozen, how many eggs are in 8 crates?

1 dozen = 12 eggs

1 crate = 20 dozen

Dimensional Analysis cont..:

Ex:3 How many centimeters are in 5.00 in?

1.00 in = 2.54 cm

CHEMISTRY

- The study of matter and the changes that can occur.
- <u>Matter</u> Anything that hass mass and occupies space.
- **<u>Substance</u>** Matter that has a constant composition and distinct properties.
- **<u>Mixture</u>** Combination of two or more substances.

<u>Element</u>- Substance that cannot be broken up into simpler substances by chemical means.

<u>Compound</u> - Substance composed of two or more elements united in fixed proportions.

<u>Homogeneous mixture</u> - Composition the same throughout.

<u>Heterogeneous mixture</u> - Nonuniform composition.

Measurement:

• Mass	gram	g
• Length	meter	m
• Time	second	S
Temperature	kelvin	K
 Amount of 	mole	mol
substance		
• volume	litre	L

Measurement and Prefixes:

Prefix	Symbol	Multiple
kilo	k	1000
deci	d	0.1
centi	c	0.01
milli	m	0.001
micro	μ	1×10 ⁻⁶
nano	n	1×10 ⁻⁹

Temperature:

- Familiar with Celsius and Fahrenheit scales. Kelvin Scale:
- Invented by Lord Kelvin. Goes from absolute zero(0 K) to infinity.

$K = {}^{o}C + 273.15$

Ex: Convert 25 °C to Kelvin.

Rules For Determining the Number of Significant Figures:

1. All numbers greater than zero are significant.

<u>Number</u>	<u># Sig Figs</u>
14.2	3
1218	4
2	1

Sig. Figs cont..

2. Zeros between non-zero numbers are significant.

<u>Number</u>	# Sig Figs
101	3
1001	4

3. Zeros used to locate decimal places and to the left of non-zero digits are not significant.

Number	# Sig Figs
0.005	1
0.0211	3
0.7	1

Sig. Figs cont..

4. All zeros to the right of a non-zero digit containing a decimal are significant.

<u>Number</u>	# Sig Figs
0.00501	3
10.010	5
12.001	5

5. Zeros to the right of a non-zero digit containing no decimal are not significant.
Ex: 400 contains one significant figure.
If 400 contains 2 or 3 significant figures it can be indicated as follows:

400 or 4.0×10^2 for 2 significant figures

400 or 4.00×10^2 for 3 significant figs

Sig. Figs cont..

6. Exact values such as definate values and counting numbers(1,2,3, etc.) have an infinite number of significant figures.
Ex: 1 L = 1000 mL, the number 1000 has an infinite number of significant figures.

Rounding Significant Figures:

- 1. If the first unwanted digit is less than five, discard all unwanted digits and leave all wanted digits alone.
- Ex: If 3.7247 is rounded to 3 significant figures, the result is 3.72
- 2. If the first unwanted digit is greater than five, discard all unwanted digits and increase the last wanted figure by one.
 Ex: If 8.56473 is rounded to 4 significant figures, the result is 8.565

Rounding Significant Figures cont.:

3. If the first unwanted figure is a five with non-zero digits after it; drop the 5 and increase the last wanted figure by one.

- If the first unwanted figure is a five with no other figures or only zeros; drop the 5 and leave alone the last wanted figure.
- Ex1: If 8.250 is rounded to 2 significant figures, the result: 8.2
- Ex2: If 7.10501 is rounded to 3 significant figures, the result: 7.11

Calculations Using Significant Figures:

- Addition/Subtraction:
- The result of the calculation must be rounded off to the same number of decimal places as the term used in the problem with the least number of decimal places.
- Ex: 161.032
 - 5.6 contains one digit after + 32.4524 decimal

199.0844 calculator round to 199.1

Calculations Using Significant

Figures cont..:

- Multiplication/Division:
- The result of the calculation must contain the same number of significant figures as the term used in the calculation with the least number of significant figures.
 - Ex: 152.06 \Leftarrow contains 5 significant $\times 0.24 \Leftrightarrow$ contains 2 significant 36.4944 must be rounded to 36

Scientific Notation:

Used to express very large and very small numbers. For significant figures only consider numbers before ×10^{exp}.

Number	Equivalent	Sci Notation
55	5.5×10	5.5 ×10 ¹
555	5.55×10×10	5.55 ×10 ²
5555	5.555×10×10×10	5.555 ×10 ³
0.55	5.5×1/10	5.5 ×10 ⁻¹
0.055	5.5×1/10×1/10	5.5 ×10 ⁻²