Intermolecular Forces:

1. Dipole-Dipole Forces: Attractive forces occuring in polar molecules. Don't exist in nonpolar molecules.

Ex: H-F

Substance	Dipole Moment(D)	Boiling Point(°C)
C ₃ H ₈	0.1	-42
C ₂ H ₆ O	1.9	-25
CH ₃ CN	3.9	82

Intermolecular Forces cont...:

- 2. Dispersion Forces(London Forces): Attractive forces occuring in nonpolar and polar molecules. Movement of electrons results in a temporary and instantaneous dipole.
- Ex: Ar, He, CH₄

symmetrical distribution

unsymmetrical distribution

London Forces increase as the number of electrons and thus the size of the molecule increases.

Substance	Melting
	Point(°C)
CH ₄ (smallest)	-182.5
CF ₄	-150.0
CCl ₄	-23.0
CBr ₄	+90.0
CI ₄ (largest)	+171.0

Intermolecular Forces cont...:

- As molecule gets bigger(more electrons), London Forces get stronger and more energy needed to separate molecules.
- 3. Hydrogen Bonding: Attractive force occuring in molecules containing hydrogen atoms directly bonded to a small electronegative atom(N,O, F).

Ex: HF, H₂O

Hydrogen Bonding in Water:

Changes in Physical State:

- Phase change is the transformation from one homogeneous phase to another.
- Matter exists in three distinct phases (gas, liquid, and solid).

- Solids: Molecules, atoms, or ions rigidly held in place and occupying a specific volume.
- Liquids: Molecules, atoms, or ions occupy a given volume but not rigidly held in place.
- Gases: Molecules, atoms, or ions not held together. Volume varies.

Liquid to Gas – Evaporation:

$H_2O(I) \rightarrow H_2O(g) \Delta H_{vap} = 43.8 \text{ kJ/mole}$ at 25°C

 ΔH_{vap} : enthalpy of vaporization. The energy required to vaporize one mole of a liquid.

Vapor Pressure:

<u>Vapor Pressure</u>: The pressure of a vapor in equilibrium with its liquid at a given temperature.

 $\mathbf{H}_{2}\mathbf{O}(\mathbf{I}) \Leftrightarrow \mathbf{H}_{2}\mathbf{O}(\mathbf{g})$

<u>Boiling Point</u>: The temperature at which the vapor pressure of a liquid equals the atmospheric pressure.

<u>normal Boiling Point</u>: The boiling point of a liquid at 1 atmosphere.

Boiling point decreases with external pressure.

Solid to Liquid:

 $H_2O(s) \rightarrow H_2O(l) \Delta H_{fus} = 6.02 \text{ kJ/mole}$

- ΔH_{fus} : enthalpy of fusion. The energy required to melt one mole of a solid. Ex:
- How much heat is required to melt 30 kg of ice?
- <u>normal Melting or Freezing Point</u>: The temperature at which solid and liquid are in equilibrium at 1 atm.

Solid \rightarrow Gas ΔH_{sub}

 ΔH_{sub} : enthalpy of sublimation. The energy required to sublime one mole of a solid.

$$\Delta \mathbf{H}_{sub} = \Delta \mathbf{H}_{fus} + \Delta \mathbf{H}_{vap}$$

Phase Diagrams:

- A phase diagram graphically illustrates all the conditions under which all the various phases of a substance can exist.
- **TP: triple point. Pressure and temperature at which all 3 phases are observed.**
- **CP: critical point. The point beyond which a substance can not be condensed into a liquid.**
- MP: Normal melting point. Temperature at
- which solid-liquid are in equilibrium at 1 atm.
- **BP:** Normal boiling point. Temperature at which liquid-gas are in equilibrium at 1 atm.

Phase Diagram for Water:

Phase Diagram of Carbon Dioxide:

 $-78^{\circ}C -57^{\circ}C$

Temperature

Unit Cells:

Repeating pattern of atoms and/or ions in a crystal.

Sodium chloride has a repeating pattern of Na⁺ and Cl⁻ ions.

Unit Cells cont...

Figure 11.15

Types of Unit Cells:

Simple cubic a = b = c $\alpha = \beta = \gamma = 90^{\circ}$

Tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Orthorhombic $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Rhombohedral a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$

Hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$

Monoclinic $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$

Triclinic $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Figure 11.16

Simple Unit Cell:

(a)

Copyright © 1994 by McGraw-Hill, Inc. All rights reserved.

Simple cubic

Body-Centered Unit Cell:

Body-centered cubic

Face-Centered Unit Cell:

Face-centered cubic

Unit Cell Calculations:

