Gases:

Units of pressure:
the $\operatorname{pascal}(\mathbf{P a})\left(\mathbf{1} \mathbf{P a}=\mathbf{1} \mathrm{N} / \mathbf{m}^{2}=\mathbf{1} \mathrm{kg} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-2}\right)$ psi(pounds per square inch) atmosphere(atm) millimeters of mercury $(\mathbf{m m ~ H g})$ torr ($\mathbf{1}$ torr $=1 \mathbf{~ m m ~ H g}$) kilopascal(kPa)

Mercury Barometer:

Standard Pressure:

$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ torr $=101 \mathrm{kPa}$

Boyle's Law:

$$
\mathrm{V} \alpha \frac{1}{\mathrm{P}} \quad \mathrm{~V}=\frac{\mathrm{k}_{1}}{\mathrm{P}}
$$

V: volume $\quad P$: pressure \mathbf{k}_{1} : constant(depends on temperature and amount of gas)

$$
\mathbf{P}_{\mathrm{i}} \mathbf{V}_{\mathrm{i}}=\mathbf{P}_{\mathrm{f}} \mathbf{V}_{\mathrm{f}}
$$

Ex:

If a gas occupies $360 . \mathrm{mL}$ under a pressure of 0.750 atm , what volume will the same gas occupy at 1.000 atm , assuming constant temperature.

Charle's Law:

$$
\mathrm{VaT}
$$

$$
\mathrm{V}=\mathrm{k}_{2} \mathrm{~T}
$$

V: volume
T: temperature in degrees Kelvin $\mathbf{k}_{\mathbf{2}}$: constant(depends on pressure and amount of gas)

$$
\frac{V_{i}}{T_{i}}=\frac{V_{f}}{T_{f}}
$$

i:initial
f: final

Ex:

A gas has a volume of 79.5 mL at $45.0^{\circ} \mathrm{C}$. What volume will it have at $0.00{ }^{\circ} \mathrm{C}$, assuming a constant presuure?

Avogadro's Law:

$\mathrm{Van} \quad \mathrm{V}=\mathrm{k}_{3} \mathrm{n}$
 $\frac{V_{i}}{n_{i}}=\frac{V_{f}}{n_{f}}$

i:initial
 f: final

Ideal Gas Law:

$\mathbf{P V}=\mathbf{n R T}$

P: pressure(in atm)
V:volume(in litres)
T:temperature(in Kelvins)
n : moles of gas
R: Gas Constant ($\mathbf{0 . 0 8 2 0 5 7} \mathbf{L} \cdot \mathbf{a t m} \cdot \mathbf{K}^{-1} \cdot$ mole $^{-1}$)
Ideal Gas - A hypothetical gas that obeys the ideal gas law.

Combined Gas Law

For a fixed amount of gas.

$$
\frac{P_{i} V_{i}}{T_{i}}=\frac{P_{f} V_{f}}{T_{f}}
$$

Ex:
The volume of a gas is 462 mL at $35.0^{\circ} \mathrm{C}$ and
1.15 atm . Calculate the volume of the gas at STP.

Standard Temperature and Pressure(STP): $\mathrm{T}=273 \mathrm{~K}, \mathrm{P}=1 \mathrm{~atm}$

Can use the ideal gas law and the measured P, V, and T to determine the amount of gas. Ex: If a 1.00 L vessel contains $\mathrm{O}_{\mathbf{2}}(\mathrm{g})$ at a pressure of 12.0 atm and $25.0^{\circ} \mathrm{C}$, find the number of moles of $\mathrm{O}_{\mathbf{2}}(\mathrm{g})$?

Ex:2 At what pressure will 7.00 g of $\mathrm{N}_{2}(\mathrm{~g})$ occupy 10.0 L at $1.00^{\circ} \mathrm{C}$?

Density of a Gas:

$$
\mathrm{d}=\frac{\mathrm{PM}}{\mathrm{RT}} \quad \mathrm{M}=\frac{\mathrm{dRT}}{\mathrm{P}}
$$

d: density (g / L)
T: temperature(K)
M: molar mass(g/mole)
P: pressure(atm)
$\mathbf{R}=\mathbf{0 . 0 8 2 1} \mathrm{L} \cdot \mathrm{atm} \cdot \mathrm{K}^{\mathbf{- 1}} \cdot$ mole $^{-1}$

Ex: Find the density of $\mathrm{NH}_{3}(\mathrm{~g})$ at $100 .{ }^{\circ} \mathrm{C}$ and 1.15 atm .

Kinetic Theory of Gases:

Postulates:

1. Volume of gas molecules is negligible.
2. No kinetic energy(energy of motion) is lost.
3. At a set temperature, all gas molecules have the same average kinetic energy. Average kinetic energy depends on temperature.
4. Attractive forces between gas molecules is negligible.

Real Gases:

Real gases deviate from ideal behavior at low temperatures and high pressures.
Deviation determined by measuring the ratio for one mole of a gas.

$$
\frac{\mathrm{PV}}{\mathrm{RT}}
$$

Factors for Deviation From Ideal Behavior:

Gas behaving ideally. $\frac{\mathrm{PV}}{\mathrm{RT}}=1$

Van der Waals Equation:

$$
\left(\mathrm{P}+\frac{\mathrm{n}^{2} \mathrm{a}}{\mathrm{~V}^{2}}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT}
$$

a and b are determined experimentally.

$\frac{\mathrm{n}^{2} \mathrm{a}}{\mathrm{V}^{2}}$
 Corrects for intermolecular forces.

nb
Corrects for the intrinsic volume of the gas molecules.
a: indicates attraction between molecules. b: related to size.

Speed of Gas Molecules:

$$
\mu_{\mathrm{ms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}
$$

$\mu_{\text {rms }}=$ root-mean-square speed M = molar mass
$\mathrm{R}=8.314 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mole}^{-1}=8.314 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-}$ ${ }^{1} \cdot$ mole $^{-1}$

Ex: Calculate the root-mean-square speed of a $\mathbf{H}_{2}(\mathrm{~g})$ molecule at $0.00^{\circ} \mathrm{C}$.

Dalton's Law of Partial Pressures:

Partial Pressure- The pressure a component of a mixture of gases would exert if alone.

Total pressure exerted by a mixture of gases that do not react is equal to the sum of the partial pressures of all the gases present.

Mole Fraction(\mathbf{X}_{2}):

$$
\mathrm{X}_{\mathrm{a}}=\frac{\mathrm{n}_{\mathrm{a}}}{\mathrm{n}_{\text {total }}}
$$

For a system consisting of two gases A and B.

$$
X_{a}+X_{b}=1
$$

Partial Pressure:

$$
\mathbf{P}_{\mathrm{a}}=\mathbf{X}_{\mathrm{a}} \cdot \mathbf{P}_{\text {total }}
$$

Ex: A mixture of 40.0 g of oxygen and 40.0 g of helium has a total pressure of $\mathbf{0 . 9 0 0}$ atm. Calculate the partial pressures of oxygen and helium.

Stoichiometry and Gas Volumes:

reactants \rightarrow gas

Ex:
A sample of sodium azide, $\mathrm{NaN}_{3}(\mathrm{~s})$ is heated to produce nitrogen and deploy a car airbag.
$\mathbf{2 N a N}_{3}(\mathrm{~s}) \quad \rightarrow \quad \mathbf{2 N a}(\mathrm{s})+\mathbf{3 N _ { 2 }}(\mathrm{g})$
If the produced $\mathrm{N}_{2}(\mathrm{~g})$ has a required volume of $230 . \mathrm{mL}$ at $25.0^{\circ} \mathrm{C}$ and 0.980 atm , how much sodium azide is required?

