Gases:

Units of pressure: the pascal(Pa)(1 Pa = $1 \text{ N/m}^2 = 1 \text{ kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2}$) psi(pounds per square inch) atmosphere(atm) millimeters of mercury(mm Hg) torr(1 torr = 1 mm Hg)kilopascal(kPa)

Mercury Barometer:

Standard Pressure:

1 atm = 760 mm Hg = 760 torr = 101 kPa

Boyle's Law:

$$V\alpha \frac{1}{P}$$
 $V = \frac{k_1}{P}$

V: volume P: pressure k₁: constant(depends on temperature and amount of gas)

 $\mathbf{P_i}\mathbf{V_i} = \mathbf{P_f}\mathbf{V_f}$

i: initial f: final

Ex:

If a gas occupies 360. mL under a pressure of 0.750 atm, what volume will the same gas occupy at 1.000 atm, assuming constant temperature.

Charle's Law:

$V\alpha T$ $V = k_2 T$

- V: volume
- T: temperature in degrees Kelvin k₂: constant(depends on pressure and amount of gas)

$$\frac{\mathbf{V}_{i}}{\mathbf{T}_{i}} = \frac{\mathbf{V}_{f}}{\mathbf{T}_{f}}$$

i:initial f: final

Ex:

A gas has a volume of 79.5 mL at 45.0 °C. What volume will it have at 0.00 °C, assuming a constant presuure?

Avogadro's Law:

Ideal Gas Law:

$\mathbf{PV} = \mathbf{nRT}$

- **P: pressure(in atm)**
- V:volume(in litres)
- **T:temperature(in Kelvins)**
- n: moles of gas
- R: Gas Constant(0.082057 L·atm·K⁻¹·mole⁻¹)

Ideal Gas - A hypothetical gas that obeys the ideal gas law.

Combined Gas Law

For a fixed amount of gas. $\frac{P_i V_i}{T_i} = \frac{P_f V_f}{T_f}$

Ex:

The volume of a gas is 462 mL at 35.0 °C and 1.15 atm. Calculate the volume of the gas at STP.

Standard Temperature and Pressure(STP): T = 273 K, P = 1 atm

Can use the ideal gas law and the measured P, V, and T to determine the amount of gas.

Ex: If a 1.00 L vessel contains $O_2(g)$ at a pressure of 12.0 atm and 25.0°C, find the number of moles of $O_2(g)$?

Ex:2 At what pressure will 7.00 g of $N_2(g)$ occupy 10.0 L at 1.00°C?

Density of a Gas:

$$d = \frac{PM}{RT} \qquad M = \frac{dRT}{P}$$

- d: density(g/L)
 T: temperature(K)
- M: molar mass(g/mole)
- **P: pressure(atm)**
- $\mathbf{R} = \mathbf{0.0821} \ \mathbf{L} \cdot \mathbf{atm} \cdot \mathbf{K}^{-1} \cdot \mathbf{mole}^{-1}$

Ex: Find the density of NH₃(g) at 100.°C and 1.15 atm.

Kinetic Theory of Gases:

Postulates:

- **1. Volume of gas molecules is negligible.**
- 2. No kinetic energy(energy of motion) is lost.
- 3. At a set temperature, all gas molecules
- have the same average kinetic energy.
- Average kinetic energy depends on
- temperature.
- 4. Attractive forces between gas molecules is negligible.

Real Gases:

Real gases deviate from ideal behavior at low temperatures and high pressures.

Deviation determined by measuring the ratio for one mole of a gas.

 $\frac{PV}{RT}$

Factors for Deviation From Ideal Behavior:

Gas behaving ideally.
$$\frac{PV}{RT} = 1$$

 $\frac{PV}{RT} < 1$ Intermolecular forces of attraction.

$\frac{PV}{RT} > 1$ Molecular Volume.

Van der Waals Equation:

$$(P + \frac{n^2 a}{V^2})(V - nb) = nRT$$

a and b are determined experimentally.

 $\frac{n^2 a}{V^2} \qquad \begin{array}{l} \text{Corrects for intermolecular} \\ \text{forces.} \end{array}$

nb Corrects for the intrinsic volume of the gas molecules.

a: indicates attraction between molecules.b: related to size.

Speed of Gas Molecules:

$$\mu_{\rm rms} = \sqrt{\frac{3{\rm RT}}{{\rm M}}}$$

- $\label{eq:mass} \begin{array}{l} \mu_{rms} = root\text{-mean-square speed} \\ M = molar \ mass \\ R = 8.314 \ J\cdot K^{-1} \cdot mole^{-1} = 8.314 \ kg\cdot m^2 \cdot s^{-2} \cdot K^{-1} \cdot mole^{-1} \end{array}$
- Ex: Calculate the root-mean-square speed of a $H_2(g)$ molecule at 0.00°C.

Dalton's Law of Partial Pressures:

<u>**Partial Pressure - The pressure a component</u></u> of a mixture of gases would exert if alone.</u>**

Total pressure exerted by a mixture of gases that do not react is equal to the sum of the partial pressures of all the gases present.

Mole Fraction(X_a):

$$X_a = \frac{n_a}{n_{total}}$$

For a system consisting of two gases A and B.

$$\mathbf{X}_{\mathbf{a}} + \mathbf{X}_{\mathbf{b}} = \mathbf{1}$$

Partial Pressure:

 $\mathbf{P}_{\mathbf{a}} = \mathbf{X}_{\mathbf{a}} \cdot \mathbf{P}_{\mathbf{total}}$

Ex: A mixture of 40.0 g of oxygen and 40.0 g of helium has a total pressure of 0.900 atm. Calculate the partial pressures of oxygen and helium.

Stoichiometry and Gas Volumes:

reactants \rightarrow gas

Ex:

- A sample of sodium azide, NaN₃(s) is heated to produce nitrogen and deploy a car airbag.
- $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$
- If the produced N₂(g) has a required volume of 230. mL at 25.0°C and 0.980 atm, how much sodium azide is required?