Electromagnetic Radiation:

Electromagnetic (EM) radiation is the transmission of energy in the form of a wave. Consists of an electric and magnetic component.

Wave Parameters of Measurement:

λ : wavelength(in metres or nanometers) u: speed(in mos) $c=$ speed of light in vacuum $\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
v : frequency(in Hz or ${ }^{-1}$)

In vacuum.

$$
\lambda=\frac{c}{v} \quad c=\lambda \cdot v
$$

Ex:

What is the frequency of light emitted by a sodium vapor lamp $(\lambda=589 \mathrm{~nm})$?

$$
\begin{aligned}
& 1 \AA=1 \times 10^{-10} \mathrm{~m} \\
& 1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}
\end{aligned}
$$

Electromagnetic Spectrum:

Atomic Spectra:

When elements are exposed to energy(heat, light, electrical energy) certain wavelengths of light are emitted and is known as a line spectrum.

Reference: https://chemistry.tutorvista.com/inorganic-chemistry/spectral-lines.html

Planck's Equation:

$$
\mathrm{E}=\mathrm{h} v
$$

E: energy(in joules)
h : Planck's constant($\mathrm{h}=\mathbf{6 . 6 2 6} \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$)

Ex:
Calculate the energy of a single photon of blue light with a wavelength of 435 nm .

Bohr's Model of the Hydrogen Atom:

Atom absorbs energy. Electron excited from $n=1$ to $n=4$.

Electron moves from $\mathrm{n}=\mathbf{4}$ to $\mathrm{n}=\mathbf{2}$. Light emitted. 486 nm (Blue-green).

Bohr's Model of the Hydrogen Atom:

The electron travels around the nucleus in well defined fixed orbits.

Electrons in orbits closest to the nucleus are the lowest in energy.

For an electron to be excited from a low orbit to a high orbit it must absorb a specific amount of energy. When the electron goes from a high orbit to a lower orbit a specific amount of energy is given off.

Bohr's Model of the Hydrogen Atom:

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{f}} \uparrow & \mathrm{E}_{\mathrm{i}} \frac{\downarrow}{\mathrm{E}_{\mathrm{i}}} \begin{array}{l}
\text { Absorption } \\
\text { of Energy }
\end{array} \\
\Delta \mathrm{E}=\mathrm{E}_{\mathrm{f}}\left(\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}\right)
\end{array}
$$

ΔE : energy absorbed or emitted $\mathbf{R}_{\mathbf{H}}$: Rydberg Constant $\left(\mathbf{2 . 1 7 9 \times 1 0 ^ { - 1 8 }} \mathrm{J}\right)$

Ex: Calculate the energy absorbed or given off when an electron travels from the $n=5$ to the $n=2$ level.

$$
\begin{aligned}
\Delta \mathrm{E} & =\mathrm{R}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}\right) \\
\mathbf{R}_{\mathbf{H}} & =\mathbf{2 . 1 7 9} \times \mathbf{1 0}^{-\mathbf{- 8}} \mathbf{J}
\end{aligned}
$$

Bohr's Model of the Hydrogen Atom:

Absorption of Energy

Emission
of Energy

$$
\Delta \mathrm{E}=\mathrm{R}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}\right)
$$

ΔE : energy absorbed or emitted $\mathbf{R}_{\mathbf{H}}$: Rydberg Constant $\left(\mathbf{2 . 1 7 9 \times 1 0 ^ { - 1 8 }} \mathbf{J}\right)$

Ex: Calculate the energy absorbed or given off when an electron travels from the $n=5$ to the $n=2$ level.

$$
\begin{aligned}
\Delta \mathrm{E} & =\mathrm{R}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}\right) \\
\mathbf{R}_{\mathbf{H}} & =\mathbf{2 . 1 7 9} \times \mathbf{1 0}^{-\mathbf{- 8}} \mathbf{J}
\end{aligned}
$$

Wave-Particle Duality:

$$
\lambda=\frac{\mathbf{h}}{\mathrm{mu}}
$$

u : velocity m: mass
λ : wavelength

$$
\mathrm{h}=6.626 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}
$$

Ex: Calculate the wavelength of a beam of electrons travelling at a speed of $3.00 \times 10^{7} \mathrm{~m} / \mathrm{s}$. mass of electron $=9.109 \times 10^{-31} \mathrm{~kg}$

The Uncertainty Principle:

$$
m \cdot \Delta x \cdot \Delta v \geq \frac{h}{4 \pi}
$$

m: mass
Δx : uncertainty in position
$\Delta \mathrm{v}$:uncertainty in velocity
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}$

Atomic Orbitals:

Atomic orbital is a region of space where there is a high probability of finding an electron.

s orbital

p_{z}

d orbitals

Quantum Numbers:

Principle Quantum Number(n):
Assigns the level or shell to which an electron belongs. Indicates relative distance from the nucleus.

$$
\mathrm{n}=1,2,3, \ldots
$$

(Positive Integers)

Orbital(Angular-Momentum) Quantum Number(l):

Assigned to each of the subshells in a shell. Indicates the shape of the orbital. l is a positive integer including zero but no larger than $\mathbf{n - 1}$.

$$
\mathbf{l}=0,1,2, \ldots, n-1
$$

Also denote subshells by letter.

$$
\mathbf{l}=\mathbf{0}, \quad \mathbf{1}, \quad \mathbf{2}, \quad \mathbf{3}, \quad \mathbf{4}
$$

notation $=\mathbf{s}, \quad \mathbf{p}, \quad \mathbf{d}, \quad \mathbf{f}, \quad \mathbf{g}$

Magnetic Quantum Number $\left(\mathrm{m}_{1}\right)$:

 Assigned to each orbital in a subshell.Describes the relative orientation of the orbital.
Negative or positive integer and range from -l to +1 .

$$
m_{1}=-1,-1+1,-1+2, \ldots, 0, \ldots+1
$$

Thus for $1=0$ (s orbital)
$\mathrm{l}=1$ (p orbital)

$$
\begin{aligned}
& m_{1}=0 \\
& m_{1}=-1,0,+1
\end{aligned}
$$

Corresponds to $\mathbf{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}$, and p_{z}.

Magnetic Spin Quantum Number(\mathbf{m}_{s})

 m_{s} describes the spin of an electron \mathbf{m}_{s} can be $+1 / 2($ denoted by \uparrow) or- $1 / 2($ denoted by \downarrow)
$+1 / 2$

$-1 / 2$

Electron Configuration:

$1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{~s}, 3 \mathrm{p}, 4 \mathrm{~s}, 3 \mathrm{~d}, 4 \mathrm{p}, 5 \mathrm{~s}, 4 \mathrm{~d}, ~ 5 \mathrm{p}, ~ 6 \mathrm{~s}, ~ 4 \mathrm{f}$,
5d, 6p, 7s, 5f, 6d
Hund's Rule: When filling electrons into orbitals of identical energy, electrons occupy these orbitals singly before pairing up.

Pauli's Exclusion Principle: For a single atom, no two electrons have the same four quantum numbers.

Aufbau Process: "Building Up Method." Determining the electron configuration of an atom is achieved by the succesive adding of electrons until the desired configuration is obtained.

Ex: Nitrogen atomic number $=7$ (7 electrons)
\mathbf{N}
or

