Chemical Equations/Reactions:

A representation of chemical reactions in terms of the symbols and formulas of the elements and compounds involved.
reactants $\rightarrow \quad$ products

- \rightarrow symbol for yield
- (g): gas (s):solid
(l): liquid (aq):aqueous

Ex: $\quad \mathbf{2 H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathbf{2 H _ { 2 }} \mathbf{O}(\mathrm{g})$
$2 \mathrm{H}_{2}$ molecules react with $1 \mathrm{O}_{2}$ molecule to yield $2 \mathrm{H}_{2} \mathrm{O}$ molecules.

Balancing Chemical Reaction Equations:

The same number of elements must appear on both sides of the yield sign in the equation.

Can not change subscripts. Can only alter the coefficients in front of each substance.

Balance the following:
Ex:

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
$$

Ex2:

$$
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Stoichiometry:

Given the amounts of reactants, can use the stoichiometry of the balanced chemical equation to determine the amounts of reactants needed and/or products produced.
Ex: $\quad \mathbf{2 H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathbf{2} \mathbf{H}_{2} \mathrm{O}(\mathrm{g})$
$2 \mathrm{H}_{2}$ molecules react with $1 \mathrm{O}_{2}$ molecule to yield $\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$ molecules.

Ex: Likewise,
2 dozen H_{2} molecules react with 1 dozen O_{2} molecule to yield 2 dozen $\mathrm{H}_{2} \mathrm{O}$ molecules.

Thus,
Represents a reaction where
$2 \mathrm{~mol} \mathrm{H}_{2}$ reacts with $1 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$ to yield 2 mol $\mathrm{H}_{2} \mathrm{O}$.

Represents a reaction where
Ex:
$\mathbf{2 H} \mathbf{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ $\rightarrow \quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$2 \mathrm{~mol} \mathrm{H}_{2}$ reacts with $1 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$ to yield 2 mol $\mathrm{H}_{2} \mathrm{O}$.

Ex:
$2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Determine the number of moles of O_{2} required to react with 5.00 mol of $\mathrm{C}_{2} \mathbf{H}_{6}$?

Ex:
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

How many grams of HCl are required to

 react with $25.0 \mathrm{~g} \mathrm{MnO}_{2}$? How many grams of Cl_{2} are produced?
Limiting Reagent:

Consider the reaction

$$
\mathbf{X}+\mathbf{Y} \rightarrow \mathbf{Z}
$$

If 1.00 mol of X and 2.00 mol of Y are available.

$\mathbf{X} \quad+\quad \mathbf{Y} \rightarrow \quad \mathbf{Z}$
Initial:
$1.00 \mathrm{~mol} \quad 2.00 \mathrm{~mol}$
0 mol
Change:
$-1.00 \mathrm{~mol}$
0.00 mol
$-1.00 \mathrm{~mol}$
+1.00 mol
Final:
1.00 mol
1.00 mol

X: used up completly Y: Limiting Reagent

Ex:
$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$
How many moles of $\mathbf{H}_{\mathbf{2}}$ can be prepared from 4.00 mol Fe and $5.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$?

Yield:

Actual Yield: Actual mass or amount of products obtained in a reaction.

Theoretical Yield: Mass or amount of products that should be obtained based on the limiting reagent.
actual yield
Percent Yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times \mathbf{1 0 0} \%$

Ex:
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathbf{O}$
If $25.0 \mathrm{~g} \mathrm{MnO}_{2}$ used in excess HCl and 18.0 g Cl_{2} is actually produced, calculate the percent yield?

Ex2:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If you have 5.00 g of N_{2} and 3.00 g of H_{2}. a) Calculate the limiting reagent. b) If $4.00 \mathrm{~g} \mathrm{of} \mathrm{NH}_{3}$ is actually produced, calculate the \% Yield.

