Chemical Equations/Reactions:

A representation of chemical reactions in terms of the symbols and formulas of the elements and compounds involved.

- reactants \rightarrow products
- \rightarrow symbol for yield
- (g): gas (s):solid (l): liquid (aq):aqueous
- Ex: $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
- 2 H_2 molecules react with 1 O_2 molecule to yield 2 H_2O molecules.

Balancing Chemical Reaction Equations:

The same number of elements must appear on both sides of the yield sign in the equation.

- Can not change subscripts. Can only alter the coefficients in front of each substance.
- **Balance the following:**
- Ex:

 $Fe(s) + H_2O(g) \rightarrow Fe_3O_4(s) + H_2(g)$

Ex2: $C_2H_6(g) + O_2(g) \rightarrow CO_2(g) + H_2O(l)$

Stoichiometry:

Given the amounts of reactants, can use the stoichiometry of the balanced chemical equation to determine the amounts of reactants needed and/or products produced.

Ex: $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

 $2 H_2$ molecules react with $1 O_2$ molecule to yield $2 H_2O$ molecules.

Ex: $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ Likewise,

2 dozen H₂ molecules react with 1 dozen O₂ molecule to yield 2 dozen H₂O molecules.

Thus,

Represents a reaction where 2 mol H_2 reacts with 1 mol O_2 to yield 2 mol H_2O .

Represents a reaction whereEx: $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$

2 mol H_2 reacts with 1 mol O_2 to yield 2 mol H_2O .

Ex:

$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(l)$

Determine the number of moles of O₂ **required to react with 5.00 mol of C**₂H₆?

$MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O$

How many grams of HCl are required to react with 25.0 g MnO₂? How many grams of Cl₂ are produced?

Limiting Reagent:

Consider the reaction $X + Y \rightarrow Z$ If 1.00 mol of X and 2.00 mol of Y are available.

	X +	$Y \rightarrow$	Ζ
Initial:	1.00 mol	2.00 mol	0 mol
Change:	-1.00 mol	-1.00 mol	+1.00 mol
Final:	0.00 mol	1.00 mol	1.00 mol

X: used up completly Y: Limiting Reagent

$3Fe(s) + 4H_2O(g) \rightarrow Fe_3O_4(s) + 4H_2(g)$

How many moles of H₂ can be prepared from 4.00 mol Fe and 5.00 mol H₂O?

Yield:

Actual Yield: Actual mass or amount of products obtained in a reaction.

Theoretical Yield: Mass or amount of products that should be obtained based on the limiting reagent.

 $Percent Yield = \frac{actual yield}{theoretical yield} \times 100\%$

$MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O$

If 25.0 g MnO₂ used in excess HCl and 18.0 g Cl₂ is actually produced, calculate the percent yield?

$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

If you have 5.00 g of N₂ and 3.00 g of H₂.
a) Calculate the limiting reagent.
b) If 4.00 g of NH₃ is actually produced,

calculate the % Yield.