Atomic Mass:

Mass of an atom in atomic mass units.

It was internationally agreed upon that the carbon- 12 atom (${ }_{6}^{12} \mathrm{C}$) would be given an atomic mass of 12 amu or 12μ.
$1 \mathrm{amu}=($ mass of one carbon-12 atom)/12

The hydrogen atom is 8.4% as massive as carbon- 12 atom. Thus the hydrogen atom has an atomic mass of 1.008 amu.

Mass Spectrometer:

Average Atomic Mass:

For elements containing isotopes, the average atomic mass is used.
$\operatorname{Avg}=\Sigma($ natural abundance $) \times($ atomic mass $)$ atomic

mass

Ex: Given the following data calculate the average atomic mass of the chlorine atom.

Isotope	Atomic Mass	\% Abundance
Cl-35	34.969 amu	75.77%
Cl-37	36.966 amu	24.23%

The Mole:

- Avogadro's Number $\rightarrow \mathbf{6 . 0 2 2 0 5} \times \mathbf{1 0}^{23}$
- mole(mol)-The amount of substance that contains the same number of elementary entities as there are atoms in exactly 12 g of carbon-12.
- 1 mole $=6.02205 \times 10^{23}$ elementary particles
- Atomic mass of $\mathrm{Be}=\mathbf{9 . 0 1 2 1 8} \mathbf{~ a m u}$
- Thus $9.01218 \mathrm{~g} \mathrm{Be}=1$ mole $\mathbf{B e}=$ $6.02205 \times 10^{23} \mathrm{Be}$ atoms

Atomic Mass

Atomic mass $(\mathrm{g} / \mathrm{mole})$ is another way to express the atomic weight of a compound.

- Atomic mass is the mass in grams of one mole unit.
- Carbon-12 has an atomic mass of $12.0 \mathrm{~g} / \mathrm{mole}$.

Molecular or Molar Mass:

- molecular mass or weight - The sum of the atomic masses of the atoms that constitute a molecule.
- formula mass or weight - The sum of the atomic masses of the atoms that constitute an ionic compound.

Ex: Calculate the number of moles and molecules in 1 cup of water ($300 . \mathrm{g} \mathrm{H}_{2} \mathrm{O}$).

Ex:2 Determine the number of \mathbf{H} atoms in
1 cup of water($\left.300 . \mathrm{g} \mathrm{H}_{2} \mathrm{O}\right)$.

Percentage Composition of a Compound:

- The percentage by mass of each element that makes up a substance.
$\%$ mass of element $=\frac{\text { g element }}{g \text { of compound }} \times 100 \%$
- If the percent composition is known, the empirical formula may be determined.

Ex:1 Find the empirical formula of a compound that contains $43.6 \% \mathrm{P}$ and
56.4\% O?

Percent Composition and Empirical Formula/Molecular Formula:

Note: The molecular formula can be derived from the empirical formula if the molecular weight of the compound is known.
Ex:2 If the molecular weight of the compound from previous example is 284 g , find the molecular formula?
Likewise if the chemical formula is known, the percent composition can be determined. Ex:3 Find the $\% \mathrm{Fe}$ in $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

